Quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying recessive Ryr1 mutations linked to congenital myopathies

  1. Jan Eckhardt
  2. Alexis Ruiz
  3. Stéphane Koenig
  4. Maud Frieden
  5. Hervé Meier
  6. Alexander Schmidt
  7. Susan Treves  Is a corresponding author
  8. Francesco Zorzato  Is a corresponding author
  1. Basel University Hospital, Switzerland
  2. University of Geneva, Switzerland
  3. University of Basel, Switzerland

Abstract

Skeletal muscles are a highly structured tissue responsible for movement and metabolic regulation, which can be broadly subdivided into fast and slow twitch muscles with each type expressing common as well as specific sets of proteins. Congenital myopathies are a group of muscle diseases leading to a weak muscle phenotype caused by mutations in a number of genes including RYR1. Patients carrying recessive RYR1 mutations usually present from birth and are generally more severely affected, showing preferential involvement of fast twitch muscles as well as extraocular and facial muscles. In order to gain more insight into the pathophysiology of recessive RYR1-congential myopathies, we performed relative and absolute quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying p.Q1970fsX16 and p.A4329D RyR1 mutations which were identified in a child with a severe congenital myopathy. Our in-depth proteomic analysis shows that recessive RYR1 mutations not only decrease the content of RyR1 protein in muscle, but change the expression of 1130, 753 and 967 proteins EDL, soleus and extraocular muscles, respectively. Specifically, recessive RYR1 mutations affect the expression level of proteins involved in calcium signaling, extracellular matrix, metabolism and ER protein quality control. This study also reveals the stoichiometry of major proteins involved in excitation contraction coupling and identifies novel potential pharmacological targets to treat RyR1-related congenital myopathies.

Data availability

All data, code, and materials used in the analysis are available in some form to any researcher for purposes of reproducing or extending the analysis. Mass spectrometry data has been deposited to the ProteomeXchange Consortium via the Pride partner repository (http://ebi.ac.uk/pride) with the following access number PXD036789.Project website: http://www.ebi.ac.uk/pride/archive/projects/PXD036789Original western blot figures have been uploaded as a zipped file as source data 1 and 2.

The following data sets were generated

Article and author information

Author details

  1. Jan Eckhardt

    Departments of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexis Ruiz

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphane Koenig

    Department of cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Maud Frieden

    Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7135-0874
  5. Hervé Meier

    Departments of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander Schmidt

    Proteomics Core Facility, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Susan Treves

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    For correspondence
    susan.treves@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-9631
  8. Francesco Zorzato

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    For correspondence
    fzorzato@usb.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8469-7065

Funding

Swiss National Science Foundation (31003A-184765)

  • Susan Treves

NeRab

  • Susan Treves

RYR1 Foundation

  • Francesco Zorzato

Swiss Muscle Foundation FSRMM

  • Susan Treves

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher L-H Huang, University of Cambridge, United Kingdom

Ethics

Animal experimentation: All experiments involving animals were carried out on 12 weeks old male wild type and dHT mice littermates. Experimental procedures were approved by the Cantonal Veterinary Authority of Basel Stadt (BS Kantonales Veterinäramt Permit numbers 1728). All experiments were performed in accordance with relevant guidelines and regulations.

Version history

  1. Received: September 21, 2022
  2. Preprint posted: September 27, 2022 (view preprint)
  3. Accepted: March 1, 2023
  4. Accepted Manuscript published: March 2, 2023 (version 1)
  5. Version of Record published: March 24, 2023 (version 2)

Copyright

© 2023, Eckhardt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 783
    Page views
  • 137
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Eckhardt
  2. Alexis Ruiz
  3. Stéphane Koenig
  4. Maud Frieden
  5. Hervé Meier
  6. Alexander Schmidt
  7. Susan Treves
  8. Francesco Zorzato
(2023)
Quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying recessive Ryr1 mutations linked to congenital myopathies
eLife 12:e83618.
https://doi.org/10.7554/eLife.83618

Share this article

https://doi.org/10.7554/eLife.83618

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Xinjian Ye, Yijing Bai ... Qianming Chen
    Research Article

    Periodontitis drives irreversible destruction of periodontal tissue and is prone to exacerbating inflammatory disorders. Systemic immunomodulatory management continues to be an attractive approach in periodontal care, particularly within the context of ‘predictive, preventive, and personalized’ periodontics. The present study incorporated genetic proxies identified through genome-wide association studies for circulating immune cells and periodontitis into a comprehensive Mendelian randomization (MR) framework. Univariable MR, multivariable MR, subgroup analysis, reverse MR, and Bayesian model averaging (MR-BMA) were utilized to investigate the causal relationships. Furthermore, transcriptome-wide association study and colocalization analysis were deployed to pinpoint the underlying genes. Consequently, the MR study indicated a causal association between circulating neutrophils, natural killer T cells, plasmacytoid dendritic cells, and an elevated risk of periodontitis. MR-BMA analysis revealed that neutrophils were the primary contributors to periodontitis. The high-confidence genes S100A9 and S100A12, located on 1q21.3, could potentially serve as immunomodulatory targets for neutrophil-mediated periodontitis. These findings hold promise for early diagnosis, risk assessment, targeted prevention, and personalized treatment of periodontitis. Considering the marginal association observed in our study, further research is required to comprehend the biological underpinnings and ascertain the clinical relevance thoroughly.