Abstract

Most bacteria exist and interact within polymicrobial communities. These interactions produce unique compounds, increase virulence and augment antibiotic resistance. One community associated with negative healthcare outcomes consists of Pseudomonas aeruginosa and Staphylococcus aureus. When co-cultured, virulence factors secreted by P. aeruginosa reduce metabolism and growth in S. aureus. When grown in vitro, this allows P. aeruginosa to drive S. aureus toward extinction. However, when found in vivo, both species can co-exist. Previous work has noted that this may be due to altered gene expression or mutations. However, little is known about how the growth environment could influence the co-existence of both species. Using a combination of mathematical modeling and experimentation, we show that changes to bacterial growth and metabolism caused by differences in the growth environment can determine the final population composition. We found that changing the carbon source in growth media affects the ratio of ATP to growth rate for both species, a metric we call absolute growth. We found that as a growth environment increases the absolute growth for one species, that species will increasingly dominate the co-culture. This is due to interactions between growth, metabolism, and metabolism-altering virulence factors produced by P. aeruginosa. Finally, we show that the relationship between absolute growth and the final population composition can be perturbed by altering the spatial structure in the community. Our results demonstrate that differences in growth environment can account for conflicting observations regarding the co-existence of these bacterial species in the literature, provides support for the intermediate disturbance hypothesis, and may offer a novel mechanism to manipulate polymicrobial populations.

Data availability

All raw experimental data is currently deposited in Dryad and will be publicly available upon publication.

The following data sets were generated

Article and author information

Author details

  1. Camryn Pajon

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marla C Fortoul

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabriela Diaz-Tang

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Estefania Marin Meneses

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariane R Kalifa

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elinor Sevy

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Taniya Mariah

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brandon M Toscan

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maili Marcelin

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniella M Hernandez

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Melissa M Marzouk

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Allison J Lopatkin

    Department of Biology, Barnard College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Omar Tonsi Eldakar

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Robert P Smith

    Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, United States
    For correspondence
    rsmith@nova.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2744-7390

Funding

Army Research Office (W911NF-18-1-0443)

  • Camryn Pajon
  • Marla C Fortoul
  • Gabriela Diaz-Tang
  • Estefania Marin Meneses
  • Ariane R Kalifa
  • Elinor Sevy
  • Taniya Mariah
  • Brandon M Toscan
  • Maili Marcelin
  • Daniella M Hernandez
  • Melissa M Marzouk
  • Allison J Lopatkin
  • Omar Tonsi Eldakar
  • Robert P Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Vaughn S Cooper, University of Pittsburgh, United States

Version history

  1. Preprint posted: September 14, 2022 (view preprint)
  2. Received: September 23, 2022
  3. Accepted: April 18, 2023
  4. Accepted Manuscript published: April 20, 2023 (version 1)
  5. Version of Record published: May 11, 2023 (version 2)
  6. Version of Record updated: May 16, 2023 (version 3)

Copyright

© 2023, Pajon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,758
    views
  • 293
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camryn Pajon
  2. Marla C Fortoul
  3. Gabriela Diaz-Tang
  4. Estefania Marin Meneses
  5. Ariane R Kalifa
  6. Elinor Sevy
  7. Taniya Mariah
  8. Brandon M Toscan
  9. Maili Marcelin
  10. Daniella M Hernandez
  11. Melissa M Marzouk
  12. Allison J Lopatkin
  13. Omar Tonsi Eldakar
  14. Robert P Smith
(2023)
Interactions between metabolism and growth can determine the co-existence of Staphylococcus aureus and Pseudomonas aeruginosa
eLife 12:e83664.
https://doi.org/10.7554/eLife.83664

Share this article

https://doi.org/10.7554/eLife.83664

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.