Metabolic model-based ecological modeling for probiotic design

  1. James D Brunner  Is a corresponding author
  2. Nicholas Chia  Is a corresponding author
  1. Los Alamos National Laboratory, United States
  2. Argonne National Laboratory, United States

Abstract

The microbial community composition in the human gut has a profound effect on human health. This observation has lead to extensive use of microbiome therapies, including over-the-counter 'probiotic' treatments intended to alter the composition of the microbiome. Despite so much promise and commercial interest, the factors that contribute to the success or failure of microbiome-targeted treatments remain unclear. We investigate the biotic interactions that lead to successful engraftment of a novel bacterial strain introduced to the microbiome as in probiotic treatments. We use pairwise genome-scale metabolic modeling with a generalized resource allocation constraint to build a network of interactions between taxa that appear in an experimental engraftment study. We create induced sub-graphs using the taxa present in individual samples and assess the likelihood of invader engraftment based on network structure. To do so, we use a generalized Lotka-Volterra model, which we show has strong ability to predict if a particular invader or probiotic will successfully engraft into an individual's microbiome. Furthermore, we show that the mechanistic nature of the model is useful for revealing which microbe-microbe interactions potentially drive engraftment.

Data availability

Data from the study that we used to evaluate our method can be found at the following source:https://www.ncbi.nlm.nih.gov/bioproject/PRJNA324129/Our method is implemented as the \emph{friendlyNets} package, available for download at \url{https://github.com/lanl/friendlyNets} along with re-formatted data and python scripts for the analysis found in this paper.

The following previously published data sets were used

Article and author information

Author details

  1. James D Brunner

    Biosciences Division, Los Alamos National Laboratory, Los Alamos, United States
    For correspondence
    jdbrunner@lanl.gov
    Competing interests
    James D Brunner, is an employee of Triad National Security, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8147-2522
  2. Nicholas Chia

    Data Science and Learning, Argonne National Laboratory, Lemont, United States
    For correspondence
    chia@anl.gov
    Competing interests
    Nicholas Chia, is an employee of UChicago Argonne, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9652-691X

Funding

U.S. Department of Energy (255LANL2018)

  • James D Brunner

Mayo Clinic

  • Nicholas Chia

Los Alamos National Laboratory (Center For Nonlinear Studies)

  • James D Brunner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Brunner & Chia

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,231
    views
  • 190
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James D Brunner
  2. Nicholas Chia
(2024)
Metabolic model-based ecological modeling for probiotic design
eLife 13:e83690.
https://doi.org/10.7554/eLife.83690

Share this article

https://doi.org/10.7554/eLife.83690

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.