Development of a versatile high-throughput mutagenesis assay with multiplexed short read NGS using DNA-barcoded supF shuttle vector library amplified in non-SOS E. coli

Abstract

A forward mutagenesis assay using the supF gene has been widely employed for the last several decades in studies addressing mutation frequencies and mutation spectra associated with various intrinsic and environmental mutagens. In this study, by using a supF shuttle vector and non-SOS-induced Escherichia coli with short read Next Generation Sequencing (NGS) technology, we present an advanced method for the study of mutations, which is simple, versatile, and cost-effective. We demonstrate the performance of our newly developed assay via pilot experiments with UV-irradiation, the results from which emerge more relevant than expected. The NGS data obtained from samples of the indicator E. coli grown on titer plates provides mutation frequency and spectrum data, and uncovers obscure mutations that cannot be detected by a conventional supF assay. Furthermore, a very small amount of NGS data from selection plates reveals the almost full spectrum of mutations in each specimen and offers us a novel insight into the mechanisms of mutagenesis, despite them being considered already well-known. We believe that the method presented here will contribute to future opportunities for research on mutagenesis, DNA repair, and cancer.

Data availability

NGS raw data has been uploaded to DDBJ database (http://www.ddbj.nig. ac.jp) under the accession number PRJDB13753 (DRA014420 for Figures 2-4, DRA014421 for Figures 5 and 6, DRA014422 for Figures 7 and 8, DRA014422 for the samples without transformation into E. coli)

Article and author information

Author details

  1. Hidehiko Kawai

    Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
    For correspondence
    kawaih@hiroshima-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2213-7166
  2. Ren Iwata

    School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shungo Ebi

    School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryusei Sugihara

    School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Shogo Masuda

    Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Chiho Fujiwara

    School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Shingo Kimura

    Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroyuki Kamiya

    Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
    For correspondence
    hirokam@hiroshima-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6866-5322

Funding

Japan Society for the Promotion of Science (JP 19K123222)

  • Hidehiko Kawai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kawai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.83780

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.