A frameshift in Yersinia pestis rcsD alters canonical Rcs signalling to preserve flea-mammal plague transmission cycles
Abstract
Multiple genetic changes in the enteric pathogen Yersinia pseudotuberculosis have driven the emergence of Yesinia pestis, the arthropod-borne, etiological agent of plague. These include developing the capacity for biofilm-dependent blockage of the flea foregut to enable transmission by flea bite. Previously, we showed that pseudogenisation of rcsA, encoding a component of the Rcs signalling pathway, is an important evolutionary step facilitating Y. pestis flea-borne transmission. Additionally, rcsD, another important gene in the Rcs system, harbours a frameshift mutation. Here, we demonstrated that this rcsD mutation resulted in production of a small protein composing the C-terminal RcsD histidine-phosphotransferase domain (designated RcsD-Hpt) and full-length RcsD. Genetic analysis revealed that the rcsD frameshift mutation followed the emergence of rcsA pseudogenisation. It further altered the canonical Rcs phosphorylation signal cascade, fine-tuning biofilm production to be conducive with retention of the pgm locus in modern lineages of Y. pestis. Taken together, our findings suggest that a frameshift mutation in rcsD, is an important evolutionary step that fine-tuned biofilm production to ensure perpetuation of flea-mammal plague transmission cycles.
Data availability
All data is available within the paper, its Supporting Information files, and the NCBI GenBank. RNA-seq sequencing data can be accessed in NCBI GenBank using BioProject ID: PRJNA876755.Source data files have been provided for Figures 2D, 4B, 4D, Figures 2- figure supplement 1F and 1G.
-
Differential expression of Y. pestis genes in Y. pestis mutant strains growing at 26 degrees C and 37 degrees CNCBI Sequence Read Archive, PRJNA876755.
Article and author information
Author details
Funding
National Major Science and Technology Projects of China (2022YFC2303202)
- Xiao-Peng Guo
National Natural Science Foundation of China (31700072)
- Xiao-Peng Guo
National Natural Science Foundation of China (31670139)
- Yi-Cheng Sun
National Natural Science Foundation of China (31800120)
- Hai-Qin Yan
the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (Project 2019HY310001)
- Yi-Cheng Sun
the CAMS Innovation Fund for Medical Sciences (Project 2021-I2M-1-043)
- Yi-Cheng Sun
fundamental Research Funds for the Central University (3332021092)
- Yi-Cheng Sun
NIH Research Project Grant (R01AI117016-01A1)
- Viveka Vadyvaloo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The animal study of flea blockage, related to Figure 5A, 5B and 5C, was performed in strict accordance with the U.S. National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (National Research Council Committee for the Update of the Guide for the and Use of Laboratory, 2011) and as approved by the Washington State University Institutional Animal Care and Use Committee, under the Animal Subject Approval Form (ASAF) 6641 and 6396.The animal study of murine infection, related to Figure 6A, 6B and 6C, was performed in strict accordance to the Guidelines for the Welfare and Ethics of Laboratory Animals of China and all the animal experiments were approved by the Institutional Animal Care Committee (IACUC) of Academy of Military Medical Sciences (AMMS), ethical approval number IACUC-DWZX-2021-057.
Copyright
© 2023, Guo et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 683
- views
-
- 144
- downloads
-
- 5
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.