Disruption of awake sharp-wave ripples does not affect memorization of locations in repeated-acquisition spatial memory tasks

  1. Lies Deceuninck  Is a corresponding author
  2. Fabian Kloosterman  Is a corresponding author
  1. KU Leuven, Belgium

Abstract

Storing and accessing memories is required to successfully perform day-to-day tasks, for example for engaging in a meaningful conversation. Previous studies in both rodents and primates have correlated hippocampal cellular activity with behavioral expression of memory. A key role has been attributed to awake hippocampal replay - a sequential reactivation of neurons representing a trajectory through space. However, it is unclear if awake replay impacts immediate future behavior, gradually creates and stabilizes long-term memories over a long period of time (hours and longer), or enables the temporary memorization of relevant events at an intermediate time scale (seconds to minutes). In this study, we aimed to address the uncertainty around the timeframe of impact of awake replay by collecting causal evidence from behaving rats. We detected and disrupted sharp wave ripples (SWRs) - signatures of putative replay events - using electrical stimulation of the ventral hippocampal commissure in rats that were trained on three different spatial memory tasks. In each task, rats were required to memorize a new set of locations in each trial or each daily session. Interestingly, the rats performed equally well with or without SWR disruptions. These data suggest that awake SWRs - and potentially replay - does not affect the immediate behavior nor the temporary memorization of relevant events at a short timescale that are required to successfully perform the spatial tasks. Based on these results we hypothesize that the impact of awake replay on memory and behavior is long-term and cumulative over time.

Data availability

Falcon software for closed-loop ripple detection and code for analysis are publicly available at http://www.bitbucket.org/kloostermannerflab. Source data are deposited in the following Figshare repository: https://figshare.com/s/4c0fcdad7e4890d7ba93.

The following data sets were generated

Article and author information

Author details

  1. Lies Deceuninck

    Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
    For correspondence
    lies.deceuninck@nerf.be
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian Kloosterman

    Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
    For correspondence
    kloosterman.fabian@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6680-9660

Funding

Fonds Wetenschappelijk Onderzoek (PhD fellowship 11D9322N)

  • Lies Deceuninck

Fonds Wetenschappelijk Onderzoek (project grant G077321N)

  • Fabian Kloosterman

KU Leuven (grant C14/17/042)

  • Fabian Kloosterman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in accordance with protocols approved by KU Leuven animal ethics committee (P119/2015 and P175/2020) and in accordance with the European Council Directive, 2010/63/EU.

Copyright

© 2024, Deceuninck & Kloosterman

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,211
    views
  • 164
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lies Deceuninck
  2. Fabian Kloosterman
(2024)
Disruption of awake sharp-wave ripples does not affect memorization of locations in repeated-acquisition spatial memory tasks
eLife 13:e84004.
https://doi.org/10.7554/eLife.84004

Share this article

https://doi.org/10.7554/eLife.84004

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.