Scratch-AID: a deep-learning based system for automatic detection of mouse scratching behavior with high accuracy

  1. Huasheng Yu  Is a corresponding author
  2. Jingwei Xiong
  3. Adam Yongxin Ye
  4. Suna Li Cranfill
  5. Tariq Cannonier
  6. Mayank Gautam
  7. Marina Zhang
  8. Rayan Bilal
  9. Jong-Eun Park
  10. Yuji Xue
  11. Vidhur Polam
  12. Zora Vujovic
  13. Daniel Dai
  14. William Ong
  15. Jasper Ip
  16. Amanda Hsieh
  17. Nour Mimouni
  18. Alejandra Lozada
  19. Medhini Sosale
  20. Alex Ahn
  21. Minghong Ma
  22. Long Ding
  23. Javier Arsuaga
  24. Wenqin Luo  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Davis, United States
  3. Howard Hughes Medical Institute, Harvard Medical School, United States
  4. Massachusetts Institute of Technology, United States

Abstract

Mice are the most commonly used model animals for itch research and for development of anti-itch drugs. Most labs manually quantify mouse scratching behavior to assess itch intensity. This process is labor-intensive and limits large-scale genetic or drug screenings. In this study, we developed a new system, Scratch-AID Automatic Itch Detection), which could automatically identify and quantify mouse scratching behavior with high accuracy. Our system included a custom-designed videotaping box to ensure high-quality and replicable mouse behavior recording and a convolutional recurrent neural network (CRNN) trained with frame-labeled mouse scratching behavior videos, induced by nape injection of chloroquine (CQ). The best trained network achieved 97.6% recall and 96.9% precision on previously unseen test videos. Remarkably, Scratch-AID could reliably identify scratching behavior in other major mouse itch models, including the acute cheek model, the histaminergic model, and a chronic itch model. Moreover, our system detected significant differences in scratching behavior between control and mice treated with an anti-itch drug. Taken together, we have established a novel deep learning-based system that is ready to replace manual quantification for mouse scratching behavior in different itch models and for drug screening.

Data availability

The training and test videos generated during the current study can be downloaded from DRYAD (https://doi.org/10.5061/dryad.mw6m9060s). The codes for model training and test can be downloaded from GitHub (https://github.com/taimeimiaole/Scratch-AID)

The following data sets were generated

Article and author information

Author details

  1. Huasheng Yu

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    huasheng.yu@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingwei Xiong

    Graduate Group in Biostatistics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam Yongxin Ye

    Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suna Li Cranfill

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3431-0061
  5. Tariq Cannonier

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mayank Gautam

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7257-5837
  7. Marina Zhang

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rayan Bilal

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jong-Eun Park

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuji Xue

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vidhur Polam

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zora Vujovic

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel Dai

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Ong

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jasper Ip

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9773-1544
  16. Amanda Hsieh

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Nour Mimouni

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Alejandra Lozada

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Medhini Sosale

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alex Ahn

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Minghong Ma

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Long Ding

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1716-3848
  23. Javier Arsuaga

    Graduate Group in Biostatistics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Wenqin Luo

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    luow@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2486-807X

Funding

National Science Foundation (DMS-1854770)

  • Javier Arsuaga

National Institutes of Health (R01 NS083702)

  • Wenqin Luo

National Institutes of Health (R34 NS118411)

  • Long Ding
  • Wenqin Luo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brian S Kim MD, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: Mice were housed in the John Morgan animal facility at the University of Pennsylvania. All animal treatments were conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee and the guidelines of the National Institutes of Health (Protocol No. 804886).

Version history

  1. Preprint posted: October 7, 2022 (view preprint)
  2. Received: October 9, 2022
  3. Accepted: November 29, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Version of Record published: December 19, 2022 (version 2)

Copyright

© 2022, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,306
    views
  • 277
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huasheng Yu
  2. Jingwei Xiong
  3. Adam Yongxin Ye
  4. Suna Li Cranfill
  5. Tariq Cannonier
  6. Mayank Gautam
  7. Marina Zhang
  8. Rayan Bilal
  9. Jong-Eun Park
  10. Yuji Xue
  11. Vidhur Polam
  12. Zora Vujovic
  13. Daniel Dai
  14. William Ong
  15. Jasper Ip
  16. Amanda Hsieh
  17. Nour Mimouni
  18. Alejandra Lozada
  19. Medhini Sosale
  20. Alex Ahn
  21. Minghong Ma
  22. Long Ding
  23. Javier Arsuaga
  24. Wenqin Luo
(2022)
Scratch-AID: a deep-learning based system for automatic detection of mouse scratching behavior with high accuracy
eLife 11:e84042.
https://doi.org/10.7554/eLife.84042

Share this article

https://doi.org/10.7554/eLife.84042

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.