Scratch-AID: a deep-learning based system for automatic detection of mouse scratching behavior with high accuracy

  1. Huasheng Yu  Is a corresponding author
  2. Jingwei Xiong
  3. Adam Yongxin Ye
  4. Suna Li Cranfill
  5. Tariq Cannonier
  6. Mayank Gautam
  7. Marina Zhang
  8. Rayan Bilal
  9. Jong-Eun Park
  10. Yuji Xue
  11. Vidhur Polam
  12. Zora Vujovic
  13. Daniel Dai
  14. William Ong
  15. Jasper Ip
  16. Amanda Hsieh
  17. Nour Mimouni
  18. Alejandra Lozada
  19. Medhini Sosale
  20. Alex Ahn
  21. Minghong Ma
  22. Long Ding
  23. Javier Arsuaga
  24. Wenqin Luo  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Davis, United States
  3. Howard Hughes Medical Institute, Harvard Medical School, United States
  4. Massachusetts Institute of Technology, United States

Abstract

Mice are the most commonly used model animals for itch research and for development of anti-itch drugs. Most labs manually quantify mouse scratching behavior to assess itch intensity. This process is labor-intensive and limits large-scale genetic or drug screenings. In this study, we developed a new system, Scratch-AID Automatic Itch Detection), which could automatically identify and quantify mouse scratching behavior with high accuracy. Our system included a custom-designed videotaping box to ensure high-quality and replicable mouse behavior recording and a convolutional recurrent neural network (CRNN) trained with frame-labeled mouse scratching behavior videos, induced by nape injection of chloroquine (CQ). The best trained network achieved 97.6% recall and 96.9% precision on previously unseen test videos. Remarkably, Scratch-AID could reliably identify scratching behavior in other major mouse itch models, including the acute cheek model, the histaminergic model, and a chronic itch model. Moreover, our system detected significant differences in scratching behavior between control and mice treated with an anti-itch drug. Taken together, we have established a novel deep learning-based system that is ready to replace manual quantification for mouse scratching behavior in different itch models and for drug screening.

Data availability

The training and test videos generated during the current study can be downloaded from DRYAD (https://doi.org/10.5061/dryad.mw6m9060s). The codes for model training and test can be downloaded from GitHub (https://github.com/taimeimiaole/Scratch-AID)

The following data sets were generated

Article and author information

Author details

  1. Huasheng Yu

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    huasheng.yu@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingwei Xiong

    Graduate Group in Biostatistics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam Yongxin Ye

    Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suna Li Cranfill

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3431-0061
  5. Tariq Cannonier

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mayank Gautam

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7257-5837
  7. Marina Zhang

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rayan Bilal

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jong-Eun Park

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuji Xue

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vidhur Polam

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zora Vujovic

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel Dai

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Ong

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jasper Ip

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9773-1544
  16. Amanda Hsieh

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Nour Mimouni

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Alejandra Lozada

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Medhini Sosale

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alex Ahn

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Minghong Ma

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Long Ding

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1716-3848
  23. Javier Arsuaga

    Graduate Group in Biostatistics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Wenqin Luo

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    luow@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2486-807X

Funding

National Science Foundation (DMS-1854770)

  • Javier Arsuaga

National Institutes of Health (R01 NS083702)

  • Wenqin Luo

National Institutes of Health (R34 NS118411)

  • Long Ding
  • Wenqin Luo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed in the John Morgan animal facility at the University of Pennsylvania. All animal treatments were conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee and the guidelines of the National Institutes of Health (Protocol No. 804886).

Copyright

© 2022, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,586
    views
  • 381
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huasheng Yu
  2. Jingwei Xiong
  3. Adam Yongxin Ye
  4. Suna Li Cranfill
  5. Tariq Cannonier
  6. Mayank Gautam
  7. Marina Zhang
  8. Rayan Bilal
  9. Jong-Eun Park
  10. Yuji Xue
  11. Vidhur Polam
  12. Zora Vujovic
  13. Daniel Dai
  14. William Ong
  15. Jasper Ip
  16. Amanda Hsieh
  17. Nour Mimouni
  18. Alejandra Lozada
  19. Medhini Sosale
  20. Alex Ahn
  21. Minghong Ma
  22. Long Ding
  23. Javier Arsuaga
  24. Wenqin Luo
(2022)
Scratch-AID: a deep-learning based system for automatic detection of mouse scratching behavior with high accuracy
eLife 11:e84042.
https://doi.org/10.7554/eLife.84042

Share this article

https://doi.org/10.7554/eLife.84042

Further reading

    1. Neuroscience
    Moritz F Wurm, Doruk Yiğit Erigüç
    Research Article

    Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent–object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.