Structural basis for the Rad6 activation by the Bre1 N-terminal domain

  1. Meng Shi
  2. Jiaqi Zhao
  3. Simin Zhang
  4. Wei Huang
  5. Mengfei Li
  6. Xue Bai
  7. Wenxue Zhang
  8. Kai Zhang
  9. Xuefeng Chen  Is a corresponding author
  10. Song Xiang  Is a corresponding author
  1. Tianjin Medical University, China
  2. Wuhan University, China
  3. Tianjin Medical University General Hospital, China

Abstract

The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1-Rad6 complex. Bre1 contains a unique N-terminal Rad6 binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD-Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6's enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.

Data availability

Diffraction data and refined structures of crystal forms 1 and 2 of the KlBre1 RBD-Rad6 complex have been deposited into the protein data bank (www.rcsb.org), with accession codes 7W75 and 7W76, respectively. All data generated or analysed during this study are included in the manuscript and supporting file; source data files are provided for Figures 1-5, figure 1 figure supplement 3 and figure 3 figure supplement 1.

The following data sets were generated

Article and author information

Author details

  1. Meng Shi

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiaqi Zhao

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Simin Zhang

    College of Life Sciences, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Huang

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengfei Li

    College of Life Sciences, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xue Bai

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wenxue Zhang

    Department of Radiation Oncology, Tianjin Medical University General Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Kai Zhang

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xuefeng Chen

    College of Life Sciences, Wuhan University, Wuhan, China
    For correspondence
    xfchen@whu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Song Xiang

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    For correspondence
    xiangsong@tmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9314-4684

Funding

National Natural Science Foundation of China (32271259,32071205 and 31870769)

  • Song Xiang

National Natural Science Foundation of China (32070573 and 31872808)

  • Xuefeng Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaobing Shi, Van Andel Institute, United States

Version history

  1. Received: October 12, 2022
  2. Preprint posted: October 24, 2022 (view preprint)
  3. Accepted: March 10, 2023
  4. Accepted Manuscript published: March 13, 2023 (version 1)
  5. Version of Record published: March 23, 2023 (version 2)

Copyright

© 2023, Shi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 761
    views
  • 168
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meng Shi
  2. Jiaqi Zhao
  3. Simin Zhang
  4. Wei Huang
  5. Mengfei Li
  6. Xue Bai
  7. Wenxue Zhang
  8. Kai Zhang
  9. Xuefeng Chen
  10. Song Xiang
(2023)
Structural basis for the Rad6 activation by the Bre1 N-terminal domain
eLife 12:e84157.
https://doi.org/10.7554/eLife.84157

Share this article

https://doi.org/10.7554/eLife.84157

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article Updated

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.