Mechanotransduction events at the physiological site of touch detection

  1. Luke H Ziolkowski
  2. Elena O Gracheva  Is a corresponding author
  3. Sviatoslav N Bagriantsev  Is a corresponding author
  1. Yale University, United States

Abstract

Afferents of peripheral mechanoreceptors innervate the skin of vertebrates, where they detect physical touch via mechanically gated ion channels (mechanotransducers). While the afferent terminal is generally understood to be the primary site of mechanotransduction, the functional properties of mechanically activated (MA) ionic current generated by mechanotransducers at this location remain obscure. Until now, direct evidence of MA current and mechanically induced action potentials in the mechanoreceptor terminal has not been obtained. Here, we report patch-clamp recordings from the afferent terminal innervating Grandry (Meissner) corpuscles in the bill skin of a tactile specialist duck. We show that mechanical stimulation evokes MA current in the afferent with fast kinetics of activation and inactivation during the dynamic phases of the mechanical stimulus. These responses trigger rapidly adapting firing in the afferent detected at the terminal and in the afferent fiber outside of the corpuscle. Our findings elucidate the initial electrogenic events of touch detection in the mechanoreceptor nerve terminal.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 and 2.

Article and author information

Author details

  1. Luke H Ziolkowski

    Department of Cellular and Molecular Physiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3420-6782
  2. Elena O Gracheva

    Department of Cellular and Molecular Physiology, Yale University, New Haven, United States
    For correspondence
    elena.gracheva@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0846-3427
  3. Sviatoslav N Bagriantsev

    Department of Cellular and Molecular Physiology, Yale University, New Haven, United States
    For correspondence
    slav.bagriantsev@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6661-3403

Funding

National Science Foundation (1923127)

  • Sviatoslav N Bagriantsev

National Science Foundation (2114084)

  • Sviatoslav N Bagriantsev

National Science Foundation (1754286)

  • Elena O Gracheva

National Institutes of Health (R01NS097547)

  • Sviatoslav N Bagriantsev

National Institutes of Health (R01NS126277)

  • Sviatoslav N Bagriantsev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments with duck embryos (Anas platyrhynchos domesticus) were approved by and performed in accordance with guidelines of the Institutional Animal Case and Use Committee of Yale University, protocol 11526.

Reviewing Editor

  1. Teresa Giraldez, University of La Laguna, Spain

Version history

  1. Received: October 13, 2022
  2. Preprint posted: October 24, 2022 (view preprint)
  3. Accepted: December 21, 2022
  4. Accepted Manuscript published: January 6, 2023 (version 1)
  5. Version of Record published: January 11, 2023 (version 2)

Copyright

© 2023, Ziolkowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,624
    Page views
  • 236
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luke H Ziolkowski
  2. Elena O Gracheva
  3. Sviatoslav N Bagriantsev
(2023)
Mechanotransduction events at the physiological site of touch detection
eLife 12:e84179.
https://doi.org/10.7554/eLife.84179

Share this article

https://doi.org/10.7554/eLife.84179

Further reading

    1. Neuroscience
    Maureen van der Grinten, Jaap de Ruyter van Steveninck ... Yağmur Güçlütürk
    Tools and Resources

    Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) has limited resolution, and a great portion of the field’s research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator’s suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.

    1. Neuroscience
    Simon Lui, Ashleigh K Brink, Laura H Corbit
    Research Article

    Extinction is a specific example of learning where a previously reinforced stimulus or response is no longer reinforced, and the previously learned behaviour is no longer necessary and must be modified. Current theories suggest extinction is not the erasure of the original learning but involves new learning that acts to suppress the original behaviour. Evidence for this can be found when the original behaviour recovers following the passage of time (spontaneous recovery) or reintroduction of the reinforcement (i.e. reinstatement). Recent studies have shown that pharmacological manipulation of noradrenaline (NA) or its receptors can influence appetitive extinction; however, the role and source of endogenous NA in these effects are unknown. Here, we examined the role of the locus coeruleus (LC) in appetitive extinction. Specifically, we tested whether optogenetic stimulation of LC neurons during extinction of a food-seeking behaviour would enhance extinction evidenced by reduced spontaneous recovery in future tests. LC stimulation during extinction trials did not change the rate of extinction but did serve to reduce subsequent spontaneous recovery, suggesting that stimulation of the LC can augment reward-related extinction. Optogenetic inhibition of the LC during extinction trials reduced responding during the trials where it was applied, but no long-lasting changes in the retention of extinction were observed. Since not all LC cells expressed halorhodopsin, it is possible that more complete LC inhibition or pathway-specific targeting would be more effective at suppressing extinction learning. These results provide further insight into the neural basis of appetitive extinction, and in particular the role of the LC. A deeper understanding of the physiological bases of extinction can aid development of more effective extinction-based therapies.