Autofluorescence imaging permits label free cell type assignment in unmodified airway and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs)

  1. Viral S Shah
  2. Jue Hou
  3. Vladimir Vinarsky
  4. Jiajie Xu
  5. Manalee Surve
  6. Charles P Lin  Is a corresponding author
  7. Jayaraj Rajagopal  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Harvard Medical School, United States

Abstract

The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real-time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the simultaneous study of 3 or 4 cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explant in real-time. Furthermore, we find that this methodology for direct cell type specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of secretory and goblet cell associated antigen passages (SAPs and GAPs) enable luminal antigen sampling. Given that airway secretory cells can be stimulated to make mucous within hours, we suspect that both SAPs and GAPs are also used for luminal antigen sampling in the airway. This hypothesis is supported by our observation that secretory cells with airway SAPs are frequently juxtaposed to antigen presenting cells.

Data availability

All data is included in the manuscript and generated custom scripts are included on https://github.com/vss11/Label-free-autofluorescence.

Article and author information

Author details

  1. Viral S Shah

    Department of Internal Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jue Hou

    Advanced Microscopy Program, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vladimir Vinarsky

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1141-6434
  4. Jiajie Xu

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Manalee Surve

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles P Lin

    Advanced Microscopy Program, Harvard Medical School, Boston, United States
    For correspondence
    charles_lin@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Jayaraj Rajagopal

    Department of Internal Medicine, Massachusetts General Hospital, Boston, United States
    For correspondence
    jrajagopal@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4122-177X

Funding

Cystic Fibrosis Foundation (003338L121)

  • Viral S Shah

NHLBI Division of Intramural Research (5R01HL142559)

  • Charles P Lin
  • Jayaraj Rajagopal

NHLBI Division of Intramural Research (RO1HL118185)

  • Jayaraj Rajagopal

NHLBI Division of Intramural Research (1R01HL157221)

  • Jayaraj Rajagopal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were maintained in accordance with the Association for Assessment and Accreditation of Laboratory Animal Care-accredited animal facility at the Massachusetts General Hospital (MGH). All procedures were performed with Institutional Animal Care and Use Committee (IACUC)-approved protocols (#2009N000119). MGH is accredited by AAALAC International, has an assurance with the Office of Laboratory Animal Welfare (OLAW) and is registered with the United States Department of Agriculture (USDA). Euthanasia was performed via house line CO2-mediated asphyxiation and confirmatory cervical dislocation consistent with the recommendations of the American Veterinary Medical Association.

Reviewing Editor

  1. Paul W Noble, Cedars-Sinai Medical Center, United States

Version history

  1. Received: October 22, 2022
  2. Preprint posted: November 1, 2022 (view preprint)
  3. Accepted: March 29, 2023
  4. Accepted Manuscript published: March 30, 2023 (version 1)
  5. Version of Record published: May 2, 2023 (version 2)

Copyright

© 2023, Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 858
    Page views
  • 132
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Viral S Shah
  2. Jue Hou
  3. Vladimir Vinarsky
  4. Jiajie Xu
  5. Manalee Surve
  6. Charles P Lin
  7. Jayaraj Rajagopal
(2023)
Autofluorescence imaging permits label free cell type assignment in unmodified airway and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs)
eLife 12:e84375.
https://doi.org/10.7554/eLife.84375

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Takehiro Kado, Zarina Akbary ... M Sloan Siegrist
    Research Article Updated

    Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2’s role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane–cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.

    1. Cell Biology
    2. Computational and Systems Biology
    Breanne Sparta, Nont Kosaisawe ... John G Albeck
    Research Article Updated

    mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.