Phase separation-mediated actin bundling by the postsynaptic density condensates

  1. Xudong Chen
  2. Bowen Jia
  3. Shihan Zhu
  4. Mingjie Zhang  Is a corresponding author
  1. Hong Kong University of Science and Technology, China
  2. Southern University of Science and Technology, China

Abstract

The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and filamentous actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensates with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.

Data availability

Source data provided for all gel images (both raw unlabeled full gels and annotated full gels as well as Excel data files for all bar graphs).

Article and author information

Author details

  1. Xudong Chen

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  2. Bowen Jia

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  3. Shihan Zhu

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  4. Mingjie Zhang

    School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    zhangmj@sustech.edu.cn
    Competing interests
    Mingjie Zhang, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-0190

Funding

National Natural Science Foundation of China (82188101)

  • Mingjie Zhang

Shenzhen Bay Laboratory (S201101002)

  • Mingjie Zhang

Guangdong Province Introduction of Innovative R&D Team (2021ZT09Y104)

  • Mingjie Zhang

Research Grants Council, University Grants Committee (AoE-M09-12,16104518 and 16101419)

  • Mingjie Zhang

Human Frontier Science Program (RGP0020/2019)

  • Mingjie Zhang

Ministry of Science and Technology of the People's Republic of China (2019YFA0508402)

  • Mingjie Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Stanford University, United States

Version history

  1. Received: October 25, 2022
  2. Preprint posted: December 6, 2022 (view preprint)
  3. Accepted: June 14, 2023
  4. Accepted Manuscript published: June 15, 2023 (version 1)
  5. Version of Record published: July 5, 2023 (version 2)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,463
    views
  • 179
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xudong Chen
  2. Bowen Jia
  3. Shihan Zhu
  4. Mingjie Zhang
(2023)
Phase separation-mediated actin bundling by the postsynaptic density condensates
eLife 12:e84446.
https://doi.org/10.7554/eLife.84446

Share this article

https://doi.org/10.7554/eLife.84446

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.