Phase separation-mediated actin bundling by the postsynaptic density condensates

  1. Xudong Chen
  2. Bowen Jia
  3. Shihan Zhu
  4. Mingjie Zhang  Is a corresponding author
  1. Hong Kong University of Science and Technology, China
  2. Southern University of Science and Technology, China

Abstract

The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and filamentous actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensates with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.

Data availability

Source data provided for all gel images (both raw unlabeled full gels and annotated full gels as well as Excel data files for all bar graphs).

Article and author information

Author details

  1. Xudong Chen

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  2. Bowen Jia

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  3. Shihan Zhu

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  4. Mingjie Zhang

    School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    zhangmj@sustech.edu.cn
    Competing interests
    Mingjie Zhang, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-0190

Funding

National Natural Science Foundation of China (82188101)

  • Mingjie Zhang

Shenzhen Bay Laboratory (S201101002)

  • Mingjie Zhang

Guangdong Province Introduction of Innovative R&D Team (2021ZT09Y104)

  • Mingjie Zhang

Research Grants Council, University Grants Committee (AoE-M09-12,16104518 and 16101419)

  • Mingjie Zhang

Human Frontier Science Program (RGP0020/2019)

  • Mingjie Zhang

Ministry of Science and Technology of the People's Republic of China (2019YFA0508402)

  • Mingjie Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Stanford University, United States

Version history

  1. Received: October 25, 2022
  2. Preprint posted: December 6, 2022 (view preprint)
  3. Accepted: June 14, 2023
  4. Accepted Manuscript published: June 15, 2023 (version 1)
  5. Version of Record published: July 5, 2023 (version 2)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,341
    views
  • 159
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xudong Chen
  2. Bowen Jia
  3. Shihan Zhu
  4. Mingjie Zhang
(2023)
Phase separation-mediated actin bundling by the postsynaptic density condensates
eLife 12:e84446.
https://doi.org/10.7554/eLife.84446

Share this article

https://doi.org/10.7554/eLife.84446

Further reading

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.