The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers

  1. Asako Ishii
  2. Jianyu Shan
  3. Xin Sheng
  4. Eunchul Kim
  5. Akimasa Watanabe
  6. Makio Yokono
  7. Chiyo Noda
  8. Chihong Song
  9. Kazuyoshi Murata
  10. Zhenfeng Liu  Is a corresponding author
  11. Jun Minagawa  Is a corresponding author
  1. National Institute for Basic Biology, Japan
  2. Chinese Academy of Sciences, China
  3. National Institutes of Natural Sciences, Japan

Abstract

As a ubiquitous picophytoplankton in the ocean and an early-branching green alga, Ostreococcus tauri is a model prasinophyte species for studying the functional evolution of the light-harvesting systems in photosynthesis. Here, we report the structure and function of the O. tauri photosystem I (PSI) supercomplex in low light conditions, where it expands its photon-absorbing capacity by assembling with the light-harvesting complexes I (LHCI) and a prasinophyte-specific light-harvesting complex (Lhcp). The architecture of the supercomplex exhibits hybrid features of the plant-type and the green algal-type PSI supercomplexes, consisting of a PSI core, a Lhca1-Lhca4-Lhca2-Lhca3 belt attached on one side and a Lhca5-Lhca6 heterodimer associated on the other side between PsaG and PsaH. Interestingly, nine Lhcp subunits, including one Lhcp1 monomer with a phosphorylated amino-terminal threonine and eight Lhcp2 monomers, oligomerize into three trimers and associate with PSI on the third side between Lhca6 and PsaK. The Lhcp1 phosphorylation and the light-harvesting capacity of PSI were subjected to reversible photoacclimation, suggesting that the formation of OtPSI-LHCI-Lhcp supercomplex is likely due to a phosphorylation-dependent mechanism induced by changes in light intensity. Notably, this supercomplex did not exhibit far-red peaks in the 77 K fluorescence spectra, which is possibly due to the weak coupling of the chlorophyll a603-a609 pair in OtLhca1-4.

Data availability

The atomic coordinates of the OtPSI-LHCI-Lhcp supercomplex have been deposited in the Protein Data Bank (PDB) with accession code 7YCA. The cryo-EM map of the supercomplex has been deposited in the Electron Microscopy Data Bank (EMDB) with accession code EMD-33737. The local maps and corresponding models of the three individual Lhcp trimers have also been deposited in the EMDB and PDB under accession codes of EMD-34733 and 8HG3, EMD-34735 and 8HG5, EMD-34736 and 8HG6.

The following data sets were generated

Article and author information

Author details

  1. Asako Ishii

    Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    No competing interests declared.
  2. Jianyu Shan

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  3. Xin Sheng

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    Xin Sheng, is affiliated with Shenzhen Jingtai Technology Co. Ltd. The author has no financial interests to declare.
  4. Eunchul Kim

    Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    No competing interests declared.
  5. Akimasa Watanabe

    Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6068-1328
  6. Makio Yokono

    Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    No competing interests declared.
  7. Chiyo Noda

    Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    No competing interests declared.
  8. Chihong Song

    National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
    Competing interests
    No competing interests declared.
  9. Kazuyoshi Murata

    National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9446-3652
  10. Zhenfeng Liu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    liuzf@ibp.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5502-9474
  11. Jun Minagawa

    Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
    For correspondence
    minagawa@nibb.ac.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3028-3203

Funding

Japan Society for the Promotion of Science (21H04778)

  • Jun Minagawa

Japan Society for the Promotion of Science (21H05040)

  • Jun Minagawa

National Natural Science Foundation of China (31925024)

  • Zhenfeng Liu

Chinese Academy of Sciences (XDB37020101)

  • Zhenfeng Liu

Chinese Academy of Sciences (YSBR-015)

  • Zhenfeng Liu

National Key Research and Development Program of China (2017YFA0503702)

  • Zhenfeng Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Kramer, Michigan State University, United States

Version history

  1. Received: October 26, 2022
  2. Preprint posted: November 9, 2022 (view preprint)
  3. Accepted: March 22, 2023
  4. Accepted Manuscript published: March 23, 2023 (version 1)
  5. Version of Record published: April 12, 2023 (version 2)

Copyright

© 2023, Ishii et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,098
    views
  • 179
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asako Ishii
  2. Jianyu Shan
  3. Xin Sheng
  4. Eunchul Kim
  5. Akimasa Watanabe
  6. Makio Yokono
  7. Chiyo Noda
  8. Chihong Song
  9. Kazuyoshi Murata
  10. Zhenfeng Liu
  11. Jun Minagawa
(2023)
The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers
eLife 12:e84488.
https://doi.org/10.7554/eLife.84488

Share this article

https://doi.org/10.7554/eLife.84488

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.