A toxin-mediated policing system in Bacillus optimizes division of labor via penalizing cheater-like nonproducers

  1. Rong Huang
  2. Jiahui Shao
  3. Zhihui Xu
  4. Yuqi Chen
  5. Yunpeng Liu
  6. Dandan Wang
  7. Haichao Feng
  8. Weibing Xun
  9. Qirong Shen
  10. Nan Zhang  Is a corresponding author
  11. Ruifu Zhang  Is a corresponding author
  1. Nanjing Agricultural University, China
  2. Chinese Academy of Agricultural Sciences, China
  3. Shandong Agricultural University, China

Abstract

Division of labor, where subpopulations perform complementary tasks simultaneously within an assembly, characterizes major evolutionary transitions of cooperation in certain cases. Currently, the mechanism and significance of mediating the interaction between different cell types during the division of labor, remain largely unknown. Here, we investigated molecular mechanism and ecological function of a policing system for optimizing the division of labor in Bacillus velezensis SQR9. During biofilm formation, cells differentiated into extracellular matrix (ECM)-producers and cheater-like nonproducers. ECM-producers were also active in the biosynthesis of genomic island-governed toxic bacillunoic acids (BAs) and self-resistance; while the nonproducers were sensitive to this antibiotic and could be partially eliminated. Spo0A was identified to be the co-regulator for triggering both ECM production and BAs synthesis/immunity. Besides its well-known regulation of ECM secretion, Spo0A activates acetyl-CoA carboxylase to produce malonyl-CoA, which is essential for BAs biosynthesis, thereby stimulating BAs production and self-immunity. Finally, the policing system not only excluded ECM-nonproducing cheater-like individuals but also improved the production of other public goods such as protease and siderophore, consequently, enhancing the population stability and ecological fitness under stress conditions and in the rhizosphere. This study provides insights into our understanding of the maintenance and evolution of microbial cooperation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Rong Huang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiahui Shao

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhihui Xu

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3987-8836
  4. Yuqi Chen

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yunpeng Liu

    Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Dandan Wang

    College of Resources and Environment, Shandong Agricultural University, Taian, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Haichao Feng

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Weibing Xun

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Qirong Shen

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Nan Zhang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    For correspondence
    nanzhang@njau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8444-7456
  11. Ruifu Zhang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    For correspondence
    rfzhang@njau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (31870096)

  • Ruifu Zhang

National Natural Science Foundation of China (42090064)

  • Qirong Shen

National Natural Science Foundation of China (31972512)

  • Zhihui Xu

National Natural Science Foundation of China (32072665)

  • Nan Zhang

National Natural Science Foundation of China (32072675)

  • Weibing Xun

National Key Research and Development Program of China (2022YFD1901300)

  • Nan Zhang

Fundamental Research Funds for the Central Universities (KYZZ2022003)

  • Ruifu Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karine A Gibbs, University of California, Berkeley, United States

Version history

  1. Preprint posted: May 14, 2022 (view preprint)
  2. Received: November 7, 2022
  3. Accepted: April 24, 2023
  4. Accepted Manuscript published: April 25, 2023 (version 1)
  5. Version of Record published: May 10, 2023 (version 2)

Copyright

© 2023, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 641
    views
  • 171
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rong Huang
  2. Jiahui Shao
  3. Zhihui Xu
  4. Yuqi Chen
  5. Yunpeng Liu
  6. Dandan Wang
  7. Haichao Feng
  8. Weibing Xun
  9. Qirong Shen
  10. Nan Zhang
  11. Ruifu Zhang
(2023)
A toxin-mediated policing system in Bacillus optimizes division of labor via penalizing cheater-like nonproducers
eLife 12:e84743.
https://doi.org/10.7554/eLife.84743

Share this article

https://doi.org/10.7554/eLife.84743

Further reading

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article Updated

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push–pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop’s constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize–Desmodium push–pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.