Thermal phenotypic plasticity of pre- and post-copulatory male harm buffers sexual conflict in wild Drosophila melanogaster

Abstract

Strong sexual selection frequently leads to sexual conflict and ensuing male harm, whereby males increase their reproductive success at the expense of harming females. Male harm is a widespread evolutionary phenomenon with a strong bearing on population viability. Thus, understanding how it unfolds in the wild is a current priority. Here, we sampled a wild Drosophila melanogaster population and studied male harm across the normal range of temperatures under which it reproduces optimally in nature by comparing female lifetime reproductive success and underlying male harm mechanisms under monogamy (i.e., low male competition/harm) vs. polyandry (i.e., high male competition/harm). While females had equal lifetime reproductive success across temperatures under monogamy, polyandry resulted in a maximum decrease of female fitness at 24°C (35%), reducing its impact at both 20°C (22%), and 28°C (10%). Furthermore, female fitness components and pre- (i.e., harassment) and post-copulatory (i.e., ejaculate toxicity) mechanisms of male harm were asymmetrically affected by temperature. At 20ºC, male harassment of females was reduced, and polyandry accelerated female actuarial ageing. In contrast, the effect of mating on female receptivity (a component of ejaculate toxicity) was affected at 28ºC, where the mating costs for females decreased and polyandry mostly resulted in accelerated reproductive ageing. We thus show that, across a natural thermal range, sexual conflict processes and their effects on female fitness components are plastic and complex. As a result, the net effect of male harm on overall population viability is likely to be lower than previously surmised. We discuss how such plasticity may affect selection, adaptation and, ultimately, evolutionary rescue under a warming climate.

Data availability

All data generated or analysed during this study are included in the manuscript. Source data files are uploaded to Dryad repository(https://doi.org/10.5061/dryad.pzgmsbcqz), along with R script https://doi.org/10.5281/zenodo.7350587

The following data sets were generated

Article and author information

Author details

  1. Claudia Londoño-Nieto

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    For correspondence
    claudia.londonon@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7408-7327
  2. Roberto García-Roa

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Clara Garcia-Co

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4126-5940
  4. Paula González

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Pau Carazo

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1525-6522

Funding

Ministerio de Ciencia e Innovación (PID2020-118027GB-I00)

  • Pau Carazo

Generalitat Valenciana (AICO/2021/113)

  • Pau Carazo

Ministerio de Educación y Formación Profesional (FJC2018-037058-I)

  • Roberto García-Roa

Marie Sklodowska Curie (HORIZON-MSCA-2021-PF-01 101061275)

  • Roberto García-Roa

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España (PRE2018-084009)

  • Claudia Londoño-Nieto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Londoño-Nieto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 802
    views
  • 130
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudia Londoño-Nieto
  2. Roberto García-Roa
  3. Clara Garcia-Co
  4. Paula González
  5. Pau Carazo
(2023)
Thermal phenotypic plasticity of pre- and post-copulatory male harm buffers sexual conflict in wild Drosophila melanogaster
eLife 12:e84759.
https://doi.org/10.7554/eLife.84759

Share this article

https://doi.org/10.7554/eLife.84759

Further reading

    1. Ecology
    Luis Abdala-Roberts, Adriana Puentes ... Kailen A Mooney
    Review Article

    Global change is causing unprecedented degradation of the Earth’s biological systems and thus undermining human prosperity. Past practices have focused either on monitoring biodiversity decline or mitigating ecosystem services degradation. Missing, but critically needed, are management approaches that monitor and restore species interaction networks, thus bridging existing practices. Our overall aim here is to lay the foundations of a framework for developing network management, defined here as the study, monitoring, and management of species interaction networks. We review theory and empirical evidence demonstrating the importance of species interaction networks for the provisioning of ecosystem services, how human impacts on those networks lead to network rewiring that underlies ecosystem service degradation, and then turn to case studies showing how network management has effectively mitigated such effects or aided in network restoration. We also examine how emerging technologies for data acquisition and analysis are providing new opportunities for monitoring species interactions and discuss the opportunities and challenges of developing effective network management. In summary, we propose that network management provides key mechanistic knowledge on ecosystem degradation that links species- to ecosystem-level responses to global change, and that emerging technological tools offer the opportunity to accelerate its widespread adoption.

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.