Structural insight into the stabilization of microtubules by taxanes

  1. Andrea E Prota  Is a corresponding author
  2. Daniel Lucena-Agell
  3. Yuntao Ma
  4. Juan Estevez-Gallego
  5. Shuo Li
  6. Katja Bargsten
  7. Fernando Josa-Prado
  8. Karl-Heinz Altmann
  9. Natacha Gaillard
  10. Shinji Kamimura
  11. Tobias Mühlethaler
  12. Federico Gago
  13. Maria A Oliva
  14. Michel O Steinmetz
  15. Wei-Shuo Fang  Is a corresponding author
  16. J Fernando Díaz  Is a corresponding author
  1. Paul Scherrer Institute, Switzerland
  2. CSIC-Centro de Investigaciones Biologicas, Spain
  3. Chinese Academy of Medical Sciences & Peking Union Medical College, China
  4. ETH Zurich, Switzerland
  5. Chuo University, Japan
  6. Univeristy of Alcalá, Spain

Abstract

Paclitaxel (Taxol®) is a taxane and a first-line chemotherapeutic drug that stabilizes microtubules. While the interaction of paclitaxel with microtubules is well described, the current lack of high-resolution structural information on a tubulin-taxane complex precludes a comprehensive description of the binding determinants that affect the drug's mechanism of action. Here, we solved the crystal structure of the core baccatin III moiety of paclitaxel lacking the C13 side chain in complex with tubulin at 1.9 Å resolution. Based on this information, we engineered two tailor-made taxanes with modified C13 side chains, solved their crystal structures in complex with tubulin, and analyzed their effects along with those of paclitaxel, docetaxel, and baccatin III on the microtubule lattice by X-ray fiber diffraction. We then compared high-resolution structures of ligand-bound tubulin and microtubule complexes with apo forms and used molecular dynamics simulations to understand the consequences of taxane binding to tubulin as well as to simplified protofilament and microtubule-lattice models. Our combined approach sheds light on three mechanistic questions. Firstly, taxanes bind better to microtubules as compared to unassembled tubulin due to a dual structural mechanism: Tubulin assembly is linked to a conformational reorganization of the bM loop, which otherwise occludes ligand access to the taxane site, while the bulky C13 side chains preferentially recognize the microtubule-assembled over the unassembled conformational state of tubulin. Second, the occupancy of the taxane site by a ligand has no influence on the straightness of tubulin protofilaments. Finally, the longitudinal expansion of the microtubule lattices arises from the accommodation of the taxane core within the site, a process that is, however, not related to the microtubule stabilization mechanism of taxanes, as all analogs tested expand the microtubule lattice, despite the fact that one of them, Baccatin III, is biochemically inactive. In conclusion, our combined experimental and computational approach allowed us to describe the tubulin-taxane interaction in atomic detail and assess the structural determinants for binding.

Data availability

Diffraction data have been deposited in PDB under the accession codes 8BDE (T2R-TTL-BacIII), 8BDF (T2R-TTL-2a) and 8BDG ((T2R-TTL-2b).

The following data sets were generated

Article and author information

Author details

  1. Andrea E Prota

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
    For correspondence
    andrea.prota@psi.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0875-5339
  2. Daniel Lucena-Agell

    Structural and Chemical Biology, CSIC-Centro de Investigaciones Biologicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7314-8696
  3. Yuntao Ma

    Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan Estevez-Gallego

    Structural and Chemical Biology, CSIC-Centro de Investigaciones Biologicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuo Li

    Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Katja Bargsten

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Fernando Josa-Prado

    Structural and Chemical Biology, CSIC-Centro de Investigaciones Biologicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6162-3231
  8. Karl-Heinz Altmann

    Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Natacha Gaillard

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Shinji Kamimura

    Department of Biological Sciences, Chuo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Tobias Mühlethaler

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Federico Gago

    Department of Biomedical Sciences, Univeristy of Alcalá, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3071-4878
  13. Maria A Oliva

    Structural and Chemical Biology, CSIC-Centro de Investigaciones Biologicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2215-4639
  14. Michel O Steinmetz

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Wei-Shuo Fang

    Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    For correspondence
    wfang@imm.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  16. J Fernando Díaz

    Structural and Chemical Biology, CSIC-Centro de Investigaciones Biologicas, Madrid, Spain
    For correspondence
    fer@cib.csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2743-3319

Funding

Ministerio de Ciencia e Innovación (PID2019-104545RB-I00)

  • J Fernando Díaz

Consejo Superior de Investigaciones Científicas (PIE 201920E111)

  • J Fernando Díaz

Fundación Tatiana Pérez de Guzmán el Bueno (Proyecto de Investigación en Neurociencia 2020)

  • J Fernando Díaz

European Union NextGenerationEU (H2020-MSCA-ITN-2019 860070 TUBINTRAIN)

  • Andrea E Prota
  • J Fernando Díaz

Swiss National Science Foundation (310030_192566)

  • Michel O Steinmetz

JSPS KAKENHI (16K07328/17H03668)

  • Shinji Kamimura

National Natural Science Foundation of China (30930108)

  • Wei-Shuo Fang

Chinese Academy of Medical Sciences (2016-I2M-1-010)

  • Wei-Shuo Fang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Prota et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea E Prota
  2. Daniel Lucena-Agell
  3. Yuntao Ma
  4. Juan Estevez-Gallego
  5. Shuo Li
  6. Katja Bargsten
  7. Fernando Josa-Prado
  8. Karl-Heinz Altmann
  9. Natacha Gaillard
  10. Shinji Kamimura
  11. Tobias Mühlethaler
  12. Federico Gago
  13. Maria A Oliva
  14. Michel O Steinmetz
  15. Wei-Shuo Fang
  16. J Fernando Díaz
(2023)
Structural insight into the stabilization of microtubules by taxanes
eLife 12:e84791.
https://doi.org/10.7554/eLife.84791

Share this article

https://doi.org/10.7554/eLife.84791

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.