ACC neural ensemble dynamics are structured by strategy prevalence

  1. Mikhail Proskurin
  2. Maxim Manakov
  3. Alla Karpova  Is a corresponding author
  1. Janelia Research Campus, United States

Abstract

Medial frontal cortical areas are thought to play a critical role in the brain's ability to flexibly deploy strategies that are effective in complex settings, yet the underlying circuit computations remain unclear. Here, by examining neural ensemble activity in male rats that sample different strategies in a self-guided search for latent task structure, we observe robust tracking during strategy execution of a summary statistic for that strategy in recent behavioral history by the anterior cingulate cortex (ACC), especially by an area homologous to primate area 32D. Using the simplest summary statistic - strategy prevalence in the last 20 choices - we find that its encoding in the ACC during strategy execution is wide-scale, independent of reward delivery, and persists through a substantial ensemble reorganization that accompanies changes in global context. We further demonstrate that the tracking of reward by the ACC ensemble is also strategy specific, but that reward prevalence is insufficient to explain the observed activity modulation during strategy execution. Our findings argue that ACC ensemble dynamics is structured by a summary statistic of recent behavioral choices, raising the possibility that ACC plays a role in estimating - through statistical learning - which actions promote the occurrence of events in the environment.

Data availability

All data can be found here:https://janelia.figshare.com/articles/dataset/Dataset_supporting_main_results_of_ACC_neural_ensemble_dynamics_are_structured_by_strategy_prevalence_/21594129/1All code can be found here:https://janelia.figshare.com/articles/software/Analysis_code_supporting_main_results_of_ACC_neural_ensemble_dynamics_are_structured_by_strategy_prevalence_/21594105/1

Article and author information

Author details

  1. Mikhail Proskurin

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxim Manakov

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alla Karpova

    Janelia Research Campus, Ashburn, United States
    For correspondence
    alla@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5869-6336

Funding

Howard Hughes Medical Institute

  • Alla Karpova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy E Behrens, University of Oxford, United Kingdom

Ethics

Animal experimentation: All animal experiments were conducted according to National Institutes of Health guidelines for animal research and were approved by the Institutional Animal Care and Use Committee at HHMI's Janelia Farm Research Campus.

Version history

  1. Received: November 14, 2022
  2. Preprint posted: November 17, 2022 (view preprint)
  3. Accepted: November 20, 2023
  4. Accepted Manuscript published: November 22, 2023 (version 1)
  5. Version of Record published: December 7, 2023 (version 2)

Copyright

© 2023, Proskurin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 660
    views
  • 108
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mikhail Proskurin
  2. Maxim Manakov
  3. Alla Karpova
(2023)
ACC neural ensemble dynamics are structured by strategy prevalence
eLife 12:e84897.
https://doi.org/10.7554/eLife.84897

Share this article

https://doi.org/10.7554/eLife.84897

Further reading

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.