Rapid, automated and experimenter-free touchscreen testing reveals reciprocal interactions between cognitive flexibility and activity-based anorexia in female rats
Abstract
Anorexia nervosa has among the highest mortality rates of any psychiatric disorder and is characterised by cognitive inflexibility that persists after weight recovery and contributes to the low rates of recovery. What remains unknown is whether cognitive inflexibility predisposes individuals to anorexia nervosa, a question that is difficult to determine from human studies. Our previous work using the most well-established animal model of anorexia nervosa, known as activity-based anorexia (ABA) identified a neurobiological link between cognitive inflexibility and susceptibility to pathological weight loss in female rats. However, testing flexible learning prior to exposure to ABA in the same animals has been thus far impossible due to the length of training required and the necessity of daily handling, which can itself influence the development of ABA. Here we describe experiments that validate and optimise the first fully-automated and experimenter-free touchscreen cognitive testing system for rats and use this novel system to examine the reciprocal links between reversal learning (an assay of cognitive flexibility) and weight loss in the ABA model. Firstly, we show substantially reduced testing time and increased throughput compared to conventional touchscreen testing methods because animals engage in test sessions at their own direction and can complete multiple sessions per day without experimenter involvement. We also show that, contrary to expectations, cognitive inflexibility measured by this reversal learning task does not predispose rats to pathological weight loss in ABA. Instead, rats that were predisposed to weight loss in ABA exhibited better flexible learning on some aspects of this task prior to ABA exposure. Intriguingly, we show reciprocal links between ABA exposure and cognitive flexibility, with ABA exposed (but weight recovered) rats performing much worse than ABA naïve rats on the reversal learning task, an impairment that did not occur to the same extent in rats exposed to food restriction conditions alone. On the other hand, animals that had been trained on reversal learning were better able to resist weight loss upon subsequent exposure to the ABA model. We also uncovered some stable behavioural differences between ABA susceptible versus resistant rats during touchscreen test sessions using machine learning tools that highlight possible predictors of anorectic phenotypes. These findings shed new light on the relationship between cognitive inflexibility and pathological weight loss and provide targets for future studies using the ABA model to investigate potential novel pharmacotherapies for anorexia nervosa.
Data availability
The data generated in this paper can be found at https://doi.org/10.6084/m9.figshare.21539685. A data analysis pipeline for providing the key data per session can be found at https://github.com/Foldi-Lab/PhenoSys-codes. The codes used to create the pose estimation and behavioural segmentation analysis and figures can also be found at https://github.com/Foldi-Lab/PhenoSys-data.
-
Raw data for figuresFigShare Dataset doi.org/10.6084/m9.figshare.21539685.v2.
Article and author information
Author details
Funding
Rebecca L. Cooper Medical Research Foundation (PG2019373-Foldi)
- Claire J Foldi
National Health and Medical Research Council (GNT2001722-Foldi)
- Claire J Foldi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental procedures were conducted in accordance with the Australian Code for the care and use of animals for scientific purposes and approved by the Monash Animal Resource Platform Ethics Committee (ERM 29143 and 15171).
Copyright
© 2023, Huang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 916
- views
-
- 104
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.
-
- Neuroscience
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.