Rapid, automated and experimenter-free touchscreen testing reveals reciprocal interactions between cognitive flexibility and activity-based anorexia in female rats
Abstract
Anorexia nervosa has among the highest mortality rates of any psychiatric disorder and is characterised by cognitive inflexibility that persists after weight recovery and contributes to the low rates of recovery. What remains unknown is whether cognitive inflexibility predisposes individuals to anorexia nervosa, a question that is difficult to determine from human studies. Our previous work using the most well-established animal model of anorexia nervosa, known as activity-based anorexia (ABA) identified a neurobiological link between cognitive inflexibility and susceptibility to pathological weight loss in female rats. However, testing flexible learning prior to exposure to ABA in the same animals has been thus far impossible due to the length of training required and the necessity of daily handling, which can itself influence the development of ABA. Here we describe experiments that validate and optimise the first fully-automated and experimenter-free touchscreen cognitive testing system for rats and use this novel system to examine the reciprocal links between reversal learning (an assay of cognitive flexibility) and weight loss in the ABA model. Firstly, we show substantially reduced testing time and increased throughput compared to conventional touchscreen testing methods because animals engage in test sessions at their own direction and can complete multiple sessions per day without experimenter involvement. We also show that, contrary to expectations, cognitive inflexibility measured by this reversal learning task does not predispose rats to pathological weight loss in ABA. Instead, rats that were predisposed to weight loss in ABA exhibited better flexible learning on some aspects of this task prior to ABA exposure. Intriguingly, we show reciprocal links between ABA exposure and cognitive flexibility, with ABA exposed (but weight recovered) rats performing much worse than ABA naïve rats on the reversal learning task, an impairment that did not occur to the same extent in rats exposed to food restriction conditions alone. On the other hand, animals that had been trained on reversal learning were better able to resist weight loss upon subsequent exposure to the ABA model. We also uncovered some stable behavioural differences between ABA susceptible versus resistant rats during touchscreen test sessions using machine learning tools that highlight possible predictors of anorectic phenotypes. These findings shed new light on the relationship between cognitive inflexibility and pathological weight loss and provide targets for future studies using the ABA model to investigate potential novel pharmacotherapies for anorexia nervosa.
Data availability
The data generated in this paper can be found at https://doi.org/10.6084/m9.figshare.21539685. A data analysis pipeline for providing the key data per session can be found at https://github.com/Foldi-Lab/PhenoSys-codes. The codes used to create the pose estimation and behavioural segmentation analysis and figures can also be found at https://github.com/Foldi-Lab/PhenoSys-data.
-
Raw data for figuresFigShare Dataset doi.org/10.6084/m9.figshare.21539685.v2.
Article and author information
Author details
Funding
Rebecca L. Cooper Medical Research Foundation (PG2019373-Foldi)
- Claire J Foldi
National Health and Medical Research Council (GNT2001722-Foldi)
- Claire J Foldi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental procedures were conducted in accordance with the Australian Code for the care and use of animals for scientific purposes and approved by the Monash Animal Resource Platform Ethics Committee (ERM 29143 and 15171).
Copyright
© 2023, Huang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 929
- views
-
- 104
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
-
- Neuroscience
When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.