Scavenger receptor endocytosis controls apical membrane morphogenesis in the Drosophila airways

  1. Ana Sofia Pinheiro
  2. Vasilios Tsarouhas  Is a corresponding author
  3. Kirsten André Senti
  4. Badrul Arefin
  5. Christos Samakovlis  Is a corresponding author
  1. Stockholm University, Sweden
  2. Institute of Molecular Biotechnology, Austria
  3. University of Gothenburg, Sweden

Abstract

The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ morphogenesis and function. In the Drosophila airway tree, the interplay of apical ECM components with the underlying membrane and cytoskeleton controls tube elongation, but the link between ECM composition with apical membrane morphogenesis and tube size regulation is elusive. Here, we characterized Emp (epithelial membrane protein), a Drosophila CD36-homologue belonging to the scavenger receptor class B protein-family. emp mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid filled airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain containing proteins. emp mutants also display over elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad and phosphorylated Src (p-Src). We show that Emp associates with and organizes the βH-Spectrin cytoskeleton and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src levels. We propose that during morphogenesis, Emp senses and responds to luminal cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis and thereby restricts airway elongation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Unprocessed Western blots are provided as source data files in zip format.

Article and author information

Author details

  1. Ana Sofia Pinheiro

    Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Vasilios Tsarouhas

    Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    For correspondence
    Vasilios.Tsarouhas@su.se
    Competing interests
    The authors declare that no competing interests exist.
  3. Kirsten André Senti

    Institute of Molecular Biotechnology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Badrul Arefin

    Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1117-9125
  5. Christos Samakovlis

    Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    For correspondence
    christos.samakovlis@scilifelab.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9153-6040

Funding

Vetenskapsrådet

  • Christos Samakovlis

Cancerfonden

  • Christos Samakovlis

O. E. och Edla Johanssons Vetenskapliga Stiftelse

  • Vasilios Tsarouhas

Magnus Bergvalls Stiftelse (2021-04453)

  • Vasilios Tsarouhas

Deutsche Forschungsgemeinschaft (KFO309)

  • Christos Samakovlis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Pinheiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 549
    views
  • 134
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Sofia Pinheiro
  2. Vasilios Tsarouhas
  3. Kirsten André Senti
  4. Badrul Arefin
  5. Christos Samakovlis
(2023)
Scavenger receptor endocytosis controls apical membrane morphogenesis in the Drosophila airways
eLife 12:e84974.
https://doi.org/10.7554/eLife.84974

Share this article

https://doi.org/10.7554/eLife.84974

Further reading

    1. Developmental Biology
    Shuhei So, Masayo Asakawa, Hitoshi Sawa
    Research Article

    Organogenesis requires the proper production of diverse cell types and their positioning/migration. However, the coordination of these processes during development remains poorly understood. The gonad in C. elegans exhibits a mirror-symmetric structure guided by the migration of distal tip cells (DTCs), which result from asymmetric divisions of somatic gonadal precursors (SGPs; Z1 and Z4). We found that the polarity of Z1 and Z4, which possess mirror-symmetric orientation, is controlled by the redundant functions of the LIN-17/Frizzled receptor and three Wnt proteins (CWN-1, CWN-2, and EGL-20) with distinct functions. In lin-17 mutants, CWN-2 promotes normal polarity in both Z1 and Z4, while CWN-1 promotes reverse and normal polarity in Z1 and Z4, respectively. In contrast, EGL-20 inhibits the polarization of both Z1 and Z4. In lin-17 egl-20 cwn-2 triple mutants with a polarity reversal of Z1, DTCs from Z1 frequently miss-migrate to the posterior side. Our further analysis demonstrates that the mis-positioning of DTCs in the gonad due to the polarity reversal of Z1 leads to mis-migration. Similar mis-migration was also observed in cki-1(RNAi) animals producing ectopic DTCs. These results highlight the role of Wnt signaling in coordinating the production and migration of DTCs to establish a mirror-symmetric organ.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article Updated

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.