Abstract

Transsynaptic tracing methods are crucial tools in studying neural circuits. Although a couple of anterograde tracing methods and a targeted retrograde tool have been developed in Drosophila melanogaster, there is still need for an unbiased, user-friendly, and flexible retrograde tracing system. Here we describe retro-Tango, a method for transsynaptic, retrograde circuit tracing and manipulation in Drosophila. In this genetically encoded system, a ligand-receptor interaction at the synapse triggers an intracellular signaling cascade that results in reporter gene expression in presynaptic neurons. Importantly, panneuronal expression of the elements of the cascade renders this method versatile, enabling its use not only to test hypotheses but also to generate them. We validate retro-Tango in various circuits and benchmark it by comparing our findings with the electron microscopy reconstruction of the Drosophila hemibrain. Our experiments establish retro-Tango as a key method for circuit tracing in neuroscience research.

Data availability

The R code used for analysis is available at: https://github.com/anthonycrown/retrotango

Article and author information

Author details

  1. Altar Sorkaç

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0739-6314
  2. Rareș A Moșneanu

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony M Crown

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Doruk Savaş

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angel M Okoro

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ezgi Memiş

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mustafa Talay

    Department of Neuroscience, Brown University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gilad Barnea

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    gilad_barnea@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6842-3454

Funding

National Institute of Mental Health (RF1MH123213)

  • Gilad Barnea

National Institute on Deafness and Other Communication Disorders (F31DC019540)

  • Anthony M Crown

Brown University Carney Institute for Brain Science (Suna Kirac Fund for Brain Science)

  • Doruk Savaş
  • Ezgi Memiş

Brown University Carney Institute for Brain Science (Graduate award in brain science)

  • Doruk Savaş

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Sorkaç et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,130
    views
  • 417
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Altar Sorkaç
  2. Rareș A Moșneanu
  3. Anthony M Crown
  4. Doruk Savaş
  5. Angel M Okoro
  6. Ezgi Memiş
  7. Mustafa Talay
  8. Gilad Barnea
(2023)
retro-Tango enables versatile retrograde circuit tracing in Drosophila
eLife 12:e85041.
https://doi.org/10.7554/eLife.85041

Share this article

https://doi.org/10.7554/eLife.85041

Further reading

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.