Binding and sequestration of poison frog alkaloids by a plasma globulin

  1. Aurora Alvarez-Buylla  Is a corresponding author
  2. Marie-Therese Fischer
  3. Maria Dolores Moya Garzon
  4. Alexandra E Rangel
  5. Elicio E Tapia
  6. Julia T Tanzo
  7. H Tom Soh
  8. Luis A Coloma
  9. Jonathan Z Long
  10. Lauren A O'Connell  Is a corresponding author
  1. Stanford University, United States
  2. Leibniz Institute for the Analysis of Biodiversity Change, Germany
  3. Centro Jambatu de Investigación y Conservación de Anfibios, Ecuador

Abstract

Alkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified. We use chemical approaches to show that a ~50 kDa plasma protein is the principal alkaloid binding molecule in blood of poison frogs. Proteomic and biochemical studies establish this plasma protein to be a liver-derived alkaloid-binding globulin (ABG) that is a member of the serine-protease inhibitor (serpin) family. In addition to alkaloid binding activity, ABG sequesters and regulates the bioavailability of “free” plasma alkaloids in vitro. Unexpectedly, ABG is not related to saxiphilin, albumin, or other known vitamin carriers, but instead exhibits sequence and structural homology to mammalian hormone carriers and amphibian biliverdin binding proteins. Alkaloid-binding globulin (ABG) represents a new small molecule binding functionality in serpin proteins, a novel mechanism of plasma alkaloid transport in poison frogs, and more broadly points towards serpins acting as tunable scaffolds for small molecule binding and transport across different organisms.

Data availability

All raw data, analysis scripts, and intermediate data analysis are available either as Source Data zip files for each figure, or through public repositories. Uncropped gel images, analysis and plotting code, raw and normalized MST data, normalized RNAseq data, and other intermediate analysis files used to make figures are available as "Source Data" zip files included with the submission. All raw proteomics and mass spectrometry data are available on DataDryad: https://doi.org/10.5061/dryad.mkkwh7143. The official ABG sequences can be found through GenBank with the following accessions: O. sylvatica (OQ032869), D. tinctorius (OQ032870), and E. tricolor (OQ032871). The O. sylvatica genome, field collected sample information, raw and trimmed sequencing reads are available through the NCBI BioProject PRJNA909817. The A. femoralis genome and raw sequencing data is available through NCBI BioProject PRJNA913987. Annotated versions of the A. femoralis and O. sylvatica genomes, as well as E. tricolor, D. tinctorius, and M. aurantiaca transcriptomes are available on DataDryad: https://doi.org/10.5061/dryad.mkkwh7143.

The following data sets were generated

Article and author information

Author details

  1. Aurora Alvarez-Buylla

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    auroraab@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6256-0300
  2. Marie-Therese Fischer

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Maria Dolores Moya Garzon

    Department of Pathology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Alexandra E Rangel

    Department of Radiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Elicio E Tapia

    Center for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
    Competing interests
    No competing interests declared.
  6. Julia T Tanzo

    Department of Pathology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  7. H Tom Soh

    Department of Radiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Luis A Coloma

    Centro Jambatu de Investigación y Conservación de Anfibios, San Rafael, Ecuador
    Competing interests
    No competing interests declared.
  9. Jonathan Z Long

    Department of Pathology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2631-7463
  10. Lauren A O'Connell

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    loconnel@stanford.edu
    Competing interests
    Lauren A O'Connell, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2706-4077

Funding

National Science Foundation (IOS-1822025)

  • Lauren A O'Connell

New York Stem Cell Foundation

  • Lauren A O'Connell

National Science Foundation Graduate Research Fellowship Program (DGE-1656518)

  • Aurora Alvarez-Buylla

Howard Hughes Medical Institute (GT13330)

  • Aurora Alvarez-Buylla

Fundacion Alfonso Martin Escudero

  • Maria Dolores Moya Garzon

Wu Tsai Human Performance Alliance

  • Maria Dolores Moya Garzon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arun Radhakrishnan, The University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: All animal procedures were approved by the Institutional Animal Care and Use Committee at Stanford (protocol #34153). Topical benzocaine was used for anesthesia prior to the euthanasia of all animals. Laboratory-bred animals were purchased from Understory Enterprises (Ontario, Canada) or Josh's Frogs (Michigan, USA) depending on the species. Animals were either euthanized for plasma collection upon arrival, or housed in 183 inch glass terraria, and fed a diet of non-toxic Drosophila melanogaster until euthanasia. Plasma and tissues from a total of 62 animals were used for this study, consisting of 32 lab-bred animals and 30 field-collected animals that are described below. Sample size of field-collected animals was determined based on variability seen in previous studies, and for laboratory experiments based on experimental needs in terms of volume of plasma.

Version history

  1. Received: November 22, 2022
  2. Preprint posted: November 23, 2022 (view preprint)
  3. Accepted: December 7, 2023
  4. Accepted Manuscript published: December 19, 2023 (version 1)
  5. Version of Record published: January 11, 2024 (version 2)

Copyright

© 2023, Alvarez-Buylla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,186
    views
  • 195
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aurora Alvarez-Buylla
  2. Marie-Therese Fischer
  3. Maria Dolores Moya Garzon
  4. Alexandra E Rangel
  5. Elicio E Tapia
  6. Julia T Tanzo
  7. H Tom Soh
  8. Luis A Coloma
  9. Jonathan Z Long
  10. Lauren A O'Connell
(2023)
Binding and sequestration of poison frog alkaloids by a plasma globulin
eLife 12:e85096.
https://doi.org/10.7554/eLife.85096

Share this article

https://doi.org/10.7554/eLife.85096

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.