Large-scale electrophysiology and deep learning reveal distorted neural signal dynamics after hearing loss

  1. Shievanie Sabesan
  2. Andreas Fragner
  3. Ciaran Bench
  4. Fotios Drakopoulos
  5. Nicholas A Lesica  Is a corresponding author
  1. University College London, United Kingdom
  2. Perceptual Technologies Ltd, United Kingdom

Abstract

Listeners with hearing loss often struggle to understand speech in noise, even with a hearing aid. To better understand the auditory processing deficits that underlie this problem, we made large-scale brain recordings from gerbils, a common animal model for human hearing, while presenting a large database of speech and noise sounds. We first used manifold learning to identify the neural subspace in which speech is encoded and found that it is low-dimensional and that the dynamics within it are profoundly distorted by hearing loss. We then trained a deep neural network (DNN) to replicate the neural coding of speech with and without hearing loss and analyzed the underlying network dynamics. We found that hearing loss primarily impacts spectral processing, creating nonlinear distortions in cross-frequency interactions that result in a hypersensitivity to background noise that persists even after amplification with a hearing aid. Our results identify a new focus for efforts to design improved hearing aids and demonstrate the power of DNNs as a tool for the study of central brain structures.

Data availability

The metadata, ABR recordings, and a subset of the IC recordings analyzed in this study are available on figshare (DOI:10.6084/m9.figshare.845654). We have made only a subset of the IC recordings available because they are also being used for commercial purposes. These purposes (to develop improved assistive listening technologies) are distinct from the purpose for which the recordings are used in this manuscript (to better understand the fundamentals of hearing loss). Researchers seeking access to the full set of neural recordings for research purposes should contact the corresponding author via e-mail to set up a material transfer agreement. The custom code used for training the deep neural network models for this study is available at github.com/nicklesica/dnn.

The following data sets were generated

Article and author information

Author details

  1. Shievanie Sabesan

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Andreas Fragner

    Perceptual Technologies Ltd, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ciaran Bench

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Fotios Drakopoulos

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Nicholas A Lesica

    Ear Institute, University College London, London, United Kingdom
    For correspondence
    n.lesica@ucl.ac.uk
    Competing interests
    Nicholas A Lesica, is a co-founder of Perceptual Technologies.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5238-4462

Funding

Wellcome Trust (200942/Z/16/Z)

  • Shievanie Sabesan
  • Nicholas A Lesica

Engineering and Physical Sciences Research Council (EP/W004275/1)

  • Ciaran Bench
  • Fotios Drakopoulos
  • Nicholas A Lesica

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were approved by the UK Home Office (PPL P56840C21). Every effort was made to minimize suffering.

Copyright

© 2023, Sabesan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 757
    views
  • 122
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shievanie Sabesan
  2. Andreas Fragner
  3. Ciaran Bench
  4. Fotios Drakopoulos
  5. Nicholas A Lesica
(2023)
Large-scale electrophysiology and deep learning reveal distorted neural signal dynamics after hearing loss
eLife 12:e85108.
https://doi.org/10.7554/eLife.85108

Share this article

https://doi.org/10.7554/eLife.85108

Further reading

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.