Large-scale electrophysiology and deep learning reveal distorted neural signal dynamics after hearing loss
Abstract
Listeners with hearing loss often struggle to understand speech in noise, even with a hearing aid. To better understand the auditory processing deficits that underlie this problem, we made large-scale brain recordings from gerbils, a common animal model for human hearing, while presenting a large database of speech and noise sounds. We first used manifold learning to identify the neural subspace in which speech is encoded and found that it is low-dimensional and that the dynamics within it are profoundly distorted by hearing loss. We then trained a deep neural network (DNN) to replicate the neural coding of speech with and without hearing loss and analyzed the underlying network dynamics. We found that hearing loss primarily impacts spectral processing, creating nonlinear distortions in cross-frequency interactions that result in a hypersensitivity to background noise that persists even after amplification with a hearing aid. Our results identify a new focus for efforts to design improved hearing aids and demonstrate the power of DNNs as a tool for the study of central brain structures.
Data availability
The metadata, ABR recordings, and a subset of the IC recordings analyzed in this study are available on figshare (DOI:10.6084/m9.figshare.845654). We have made only a subset of the IC recordings available because they are also being used for commercial purposes. These purposes (to develop improved assistive listening technologies) are distinct from the purpose for which the recordings are used in this manuscript (to better understand the fundamentals of hearing loss). Researchers seeking access to the full set of neural recordings for research purposes should contact the corresponding author via e-mail to set up a material transfer agreement. The custom code used for training the deep neural network models for this study is available at github.com/nicklesica/dnn.
-
Data from Sabesan et al., 202310.6084/m9.figshare.845654.
Article and author information
Author details
Funding
Wellcome Trust (200942/Z/16/Z)
- Shievanie Sabesan
- Nicholas A Lesica
Engineering and Physical Sciences Research Council (EP/W004275/1)
- Ciaran Bench
- Fotios Drakopoulos
- Nicholas A Lesica
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental protocols were approved by the UK Home Office (PPL P56840C21). Every effort was made to minimize suffering.
Copyright
© 2023, Sabesan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 940
- views
-
- 143
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Neuroscience
During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.
-
- Neuroscience
Recombinant optogenetic and chemogenetic proteins are potent tools for manipulating neuronal activity and controlling neural circuit function. However, there are few analogous tools for manipulating the structure of neural circuits. Here, we introduce three rationally designed genetically encoded tools that use E3 ligase-dependent mechanisms to trigger the degradation of synaptic scaffolding proteins, leading to functional ablation of synapses. First, we developed a constitutive excitatory synapse ablator, PFE3, analogous to the inhibitory synapse ablator GFE3. PFE3 targets the RING domain of the E3 ligase Mdm2 and the proteasome-interacting region of Protocadherin 10 to the scaffolding protein PSD-95, leading to efficient ablation of excitatory synapses. In addition, we developed a light-inducible version of GFE3, paGFE3, using a novel photoactivatable complex based on the photocleavable protein PhoCl2c. paGFE3 degrades Gephyrin and ablates inhibitory synapses in response to 400 nm light. Finally, we developed a chemically inducible version of GFE3, chGFE3, which degrades inhibitory synapses when combined with the bio-orthogonal dimerizer HaloTag ligand-trimethoprim. Each tool is specific, reversible, and capable of breaking neural circuits at precise locations.