The large GTPase Sey1/atlastin mediates lipid droplet- and FadL-dependent intracellular fatty acid metabolism of Legionella pneumophila

  1. Dario Hüsler
  2. Pia Stauffer
  3. Bernhard Keller
  4. Desirée Böck
  5. Thomas Steiner
  6. Anne Ostrzinski
  7. Simone Vormittag
  8. Bianca Striednig
  9. A Leoni Swart
  10. François Letourneur
  11. Sandra Maaß
  12. Dörte Becher
  13. Wolfgang Eisenreich
  14. Martin Pilhofer
  15. Hubert Hilbi  Is a corresponding author
  1. University of Zurich, Switzerland
  2. ETH Zurich, Switzerland
  3. Technical University of Munich, Germany
  4. University of Greifswald, Germany
  5. INSERM, University of Montpellier, France

Abstract

The amoeba-resistant bacterium Legionella pneumophila causes Legionnaires' disease and employs a type IV secretion system (T4SS) to replicate in the unique, ER-associated Legionella-containing vacuole (LCV). The large fusion GTPase Sey1/atlastin is implicated in ER dynamics, ER-derived lipid droplet (LD) formation, and LCV maturation. Here we employ cryo-electron tomography, confocal microscopy, proteomics, and isotopologue profiling to analyze LCV-LDs interactions in the genetically tractable amoeba Dictyostelium discoideum. Dually fluorescence-labeled D. discoideum producing LCV and LD markers revealed that Sey1 as well as the L. pneumophila T4SS and the Ran GTPase activator LegG1 promote LCV-LDs interactions. In vitro reconstitution using purified LCVs and LDs from parental or Dsey1 mutant D. discoideum indicated that Sey1 and GTP promote this process. Sey1 and the L. pneumophila fatty acid transporter FadL are implicated in palmitate catabolism and palmitate-dependent intracellular growth. Taken together, our results reveal that Sey1 and LegG1 mediate LD- and FadL-dependent fatty acid metabolism of intracellular L. pneumophila.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.The MS proteomics data discussed in this publication have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD038200

The following data sets were generated

Article and author information

Author details

  1. Dario Hüsler

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Pia Stauffer

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Bernhard Keller

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Desirée Böck

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Steiner

    Bavarian NMR Center - Structural Membrane Biochemistry, Technical University of Munich, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne Ostrzinski

    Institute of Microbiology, University of Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Simone Vormittag

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Bianca Striednig

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7575-8965
  9. A Leoni Swart

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. François Letourneur

    INSERM, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2232-6127
  11. Sandra Maaß

    Institute of Microbiology, University of Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Dörte Becher

    Institute for Microbiology, University of Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9630-5735
  13. Wolfgang Eisenreich

    Bavarian NMR Center - Structural Membrane Biochemistry, Technical University of Munich, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Martin Pilhofer

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Hubert Hilbi

    Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
    For correspondence
    hilbi@imm.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5462-9301

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_175557)

  • Hubert Hilbi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_207826)

  • Hubert Hilbi

NOMIS Stiftung

  • Martin Pilhofer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Hüsler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 690
    views
  • 138
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dario Hüsler
  2. Pia Stauffer
  3. Bernhard Keller
  4. Desirée Böck
  5. Thomas Steiner
  6. Anne Ostrzinski
  7. Simone Vormittag
  8. Bianca Striednig
  9. A Leoni Swart
  10. François Letourneur
  11. Sandra Maaß
  12. Dörte Becher
  13. Wolfgang Eisenreich
  14. Martin Pilhofer
  15. Hubert Hilbi
(2023)
The large GTPase Sey1/atlastin mediates lipid droplet- and FadL-dependent intracellular fatty acid metabolism of Legionella pneumophila
eLife 12:e85142.
https://doi.org/10.7554/eLife.85142

Share this article

https://doi.org/10.7554/eLife.85142

Further reading

    1. Microbiology and Infectious Disease
    Maneesh Kumar Singh, Victoria Ann Bonnell ... Celia RS Garcia
    Research Article

    Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael B Hall, Ryan R Wick ... Lachlan Coin
    Research Article

    Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT’s super-high accuracy model. ONT’s superior performance is attributed to its ability to overcome Illumina’s errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT’s super-high accuracy data mitigates ONT’s traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.