Abstract

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacologic neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacologic suppression.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Hiroaki Eshima

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Justin L Shahtout

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Piyarat Siripoksup

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. MacKenzie J Pearson

    Sciex, Framingham, United States
    Competing interests
    MacKenzie J Pearson, is affiliated with Sciex. The author has no financial interests to declare..
  5. Ziad S Mahmassani

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Patrick J Ferrara

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Alexis W Lyons

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  8. John Alan Maschek

    Metabolomics Core Research Facility, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Alek D Peterlin

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2837-7446
  10. Anthony RP Verkerke

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  11. Jordan M Johnson

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Anahy Salcedo

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  13. Jonathan J Petrocelli

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  14. Edwin R Miranda

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  15. Ethan J Anderson

    Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  16. Sihem Boudina

    Department of Nutrition and Integrative Physiology, College of Health,, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  17. Qitao Ran

    Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  18. James E Cox

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  19. Micah J Drummond

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  20. Katsuhiko Funai

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    For correspondence
    kfunai@utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3802-4756

Funding

National Institutes of Health (DK107397)

  • Katsuhiko Funai

National Institutes of Health (HL149870)

  • Sihem Boudina

National Institutes of Health (HL139451)

  • Ziad S Mahmassani

National Institutes of Health (DK130555)

  • Alek D Peterlin

National Institutes of Health (AG073493)

  • Jonathan J Petrocelli

American Heart Association (915674)

  • Piyarat Siripoksup

American Heart Association (18PRE33960491)

  • Anthony RP Verkerke

American Heart Association (19PRE34380991)

  • Jordan M Johnson

Larry H. & Gail Miller Family Foundation (Predoctoral fellowship)

  • Patrick J Ferrara

Uehara Memorial Foundation (Postdoctoral fellowship)

  • Hiroaki Eshima

National Institutes of Health (DK127979)

  • Katsuhiko Funai

National Institutes of Health (GM144613)

  • Katsuhiko Funai

National Institutes of Health (AG074535)

  • Katsuhiko Funai

National Institutes of Health (AG063077)

  • Katsuhiko Funai

National Institutes of Health (AG050781)

  • Micah J Drummond

National Institutes of Health (HL122863)

  • Ethan J Anderson

National Institutes of Health (AG057006)

  • Ethan J Anderson

National Institutes of Health (AG064078)

  • Qitao Ran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20-07007) of the University of Utah.

Human subjects: Informed consent and consent to publish was obtained from subjects. All procedures were approved by institutional IRB at the University of Utah and conformed to the Declaration of Helsinki and Title 45, US Code of Federal Regulations, Part 46, "Protection of Human Subjects."

Copyright

© 2023, Eshima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,440
    views
  • 417
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroaki Eshima
  2. Justin L Shahtout
  3. Piyarat Siripoksup
  4. MacKenzie J Pearson
  5. Ziad S Mahmassani
  6. Patrick J Ferrara
  7. Alexis W Lyons
  8. John Alan Maschek
  9. Alek D Peterlin
  10. Anthony RP Verkerke
  11. Jordan M Johnson
  12. Anahy Salcedo
  13. Jonathan J Petrocelli
  14. Edwin R Miranda
  15. Ethan J Anderson
  16. Sihem Boudina
  17. Qitao Ran
  18. James E Cox
  19. Micah J Drummond
  20. Katsuhiko Funai
(2023)
Lipid hydroperoxides promote sarcopenia through carbonyl stress
eLife 12:e85289.
https://doi.org/10.7554/eLife.85289

Share this article

https://doi.org/10.7554/eLife.85289

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.