Abstract

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacologic neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacologic suppression.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Hiroaki Eshima

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Justin L Shahtout

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Piyarat Siripoksup

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. MacKenzie J Pearson

    Sciex, Framingham, United States
    Competing interests
    MacKenzie J Pearson, is affiliated with Sciex. The author has no financial interests to declare..
  5. Ziad S Mahmassani

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Patrick J Ferrara

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Alexis W Lyons

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  8. John Alan Maschek

    Metabolomics Core Research Facility, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Alek D Peterlin

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2837-7446
  10. Anthony RP Verkerke

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  11. Jordan M Johnson

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Anahy Salcedo

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  13. Jonathan J Petrocelli

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  14. Edwin R Miranda

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  15. Ethan J Anderson

    Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  16. Sihem Boudina

    Department of Nutrition and Integrative Physiology, College of Health,, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  17. Qitao Ran

    Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  18. James E Cox

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  19. Micah J Drummond

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  20. Katsuhiko Funai

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    For correspondence
    kfunai@utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3802-4756

Funding

National Institutes of Health (DK107397)

  • Katsuhiko Funai

National Institutes of Health (HL149870)

  • Sihem Boudina

National Institutes of Health (HL139451)

  • Ziad S Mahmassani

National Institutes of Health (DK130555)

  • Alek D Peterlin

National Institutes of Health (AG073493)

  • Jonathan J Petrocelli

American Heart Association (915674)

  • Piyarat Siripoksup

American Heart Association (18PRE33960491)

  • Anthony RP Verkerke

American Heart Association (19PRE34380991)

  • Jordan M Johnson

Larry H. & Gail Miller Family Foundation (Predoctoral fellowship)

  • Patrick J Ferrara

Uehara Memorial Foundation (Postdoctoral fellowship)

  • Hiroaki Eshima

National Institutes of Health (DK127979)

  • Katsuhiko Funai

National Institutes of Health (GM144613)

  • Katsuhiko Funai

National Institutes of Health (AG074535)

  • Katsuhiko Funai

National Institutes of Health (AG063077)

  • Katsuhiko Funai

National Institutes of Health (AG050781)

  • Micah J Drummond

National Institutes of Health (HL122863)

  • Ethan J Anderson

National Institutes of Health (AG057006)

  • Ethan J Anderson

National Institutes of Health (AG064078)

  • Qitao Ran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20-07007) of the University of Utah.

Human subjects: Informed consent and consent to publish was obtained from subjects. All procedures were approved by institutional IRB at the University of Utah and conformed to the Declaration of Helsinki and Title 45, US Code of Federal Regulations, Part 46, "Protection of Human Subjects."

Copyright

© 2023, Eshima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,479
    views
  • 422
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroaki Eshima
  2. Justin L Shahtout
  3. Piyarat Siripoksup
  4. MacKenzie J Pearson
  5. Ziad S Mahmassani
  6. Patrick J Ferrara
  7. Alexis W Lyons
  8. John Alan Maschek
  9. Alek D Peterlin
  10. Anthony RP Verkerke
  11. Jordan M Johnson
  12. Anahy Salcedo
  13. Jonathan J Petrocelli
  14. Edwin R Miranda
  15. Ethan J Anderson
  16. Sihem Boudina
  17. Qitao Ran
  18. James E Cox
  19. Micah J Drummond
  20. Katsuhiko Funai
(2023)
Lipid hydroperoxides promote sarcopenia through carbonyl stress
eLife 12:e85289.
https://doi.org/10.7554/eLife.85289

Share this article

https://doi.org/10.7554/eLife.85289

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.