Abstract

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacologic neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacologic suppression.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Hiroaki Eshima

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Justin L Shahtout

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Piyarat Siripoksup

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. MacKenzie J Pearson

    Sciex, Framingham, United States
    Competing interests
    MacKenzie J Pearson, is affiliated with Sciex. The author has no financial interests to declare..
  5. Ziad S Mahmassani

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Patrick J Ferrara

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Alexis W Lyons

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  8. John Alan Maschek

    Metabolomics Core Research Facility, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Alek D Peterlin

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2837-7446
  10. Anthony RP Verkerke

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  11. Jordan M Johnson

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Anahy Salcedo

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  13. Jonathan J Petrocelli

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  14. Edwin R Miranda

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  15. Ethan J Anderson

    Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  16. Sihem Boudina

    Department of Nutrition and Integrative Physiology, College of Health,, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  17. Qitao Ran

    Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  18. James E Cox

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  19. Micah J Drummond

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  20. Katsuhiko Funai

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    For correspondence
    kfunai@utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3802-4756

Funding

National Institutes of Health (DK107397)

  • Katsuhiko Funai

National Institutes of Health (HL149870)

  • Sihem Boudina

National Institutes of Health (HL139451)

  • Ziad S Mahmassani

National Institutes of Health (DK130555)

  • Alek D Peterlin

National Institutes of Health (AG073493)

  • Jonathan J Petrocelli

American Heart Association (915674)

  • Piyarat Siripoksup

American Heart Association (18PRE33960491)

  • Anthony RP Verkerke

American Heart Association (19PRE34380991)

  • Jordan M Johnson

Larry H. & Gail Miller Family Foundation (Predoctoral fellowship)

  • Patrick J Ferrara

Uehara Memorial Foundation (Postdoctoral fellowship)

  • Hiroaki Eshima

National Institutes of Health (DK127979)

  • Katsuhiko Funai

National Institutes of Health (GM144613)

  • Katsuhiko Funai

National Institutes of Health (AG074535)

  • Katsuhiko Funai

National Institutes of Health (AG063077)

  • Katsuhiko Funai

National Institutes of Health (AG050781)

  • Micah J Drummond

National Institutes of Health (HL122863)

  • Ethan J Anderson

National Institutes of Health (AG057006)

  • Ethan J Anderson

National Institutes of Health (AG064078)

  • Qitao Ran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20-07007) of the University of Utah.

Human subjects: Informed consent and consent to publish was obtained from subjects. All procedures were approved by institutional IRB at the University of Utah and conformed to the Declaration of Helsinki and Title 45, US Code of Federal Regulations, Part 46, "Protection of Human Subjects."

Copyright

© 2023, Eshima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,281
    views
  • 398
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroaki Eshima
  2. Justin L Shahtout
  3. Piyarat Siripoksup
  4. MacKenzie J Pearson
  5. Ziad S Mahmassani
  6. Patrick J Ferrara
  7. Alexis W Lyons
  8. John Alan Maschek
  9. Alek D Peterlin
  10. Anthony RP Verkerke
  11. Jordan M Johnson
  12. Anahy Salcedo
  13. Jonathan J Petrocelli
  14. Edwin R Miranda
  15. Ethan J Anderson
  16. Sihem Boudina
  17. Qitao Ran
  18. James E Cox
  19. Micah J Drummond
  20. Katsuhiko Funai
(2023)
Lipid hydroperoxides promote sarcopenia through carbonyl stress
eLife 12:e85289.
https://doi.org/10.7554/eLife.85289

Share this article

https://doi.org/10.7554/eLife.85289

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.