Functional membrane microdomains and the hydroxamate siderophore transporter ATPase FhuC govern Isd-dependent heme acquisition in Staphylococcus aureus

  1. Lea Antje Adolf
  2. Angelika Müller-Jochim
  3. Lara Kricks
  4. Jan-Samuel Puls
  5. Daniel Lopez
  6. Fabian Grein
  7. Simon Heilbronner  Is a corresponding author
  1. Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
  2. Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Germany
  3. Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Germany
  4. National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Spain
  5. Research Centre for Infectious Diseases (ZINF), University of Würzburg, Germany
  6. Institute for Molecular Infection Biology (IMIB), University of Würzburg, Germany
  7. Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Germany
  8. German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
  9. German Center for Infection Research (DZIF), Germany
  10. Faculty of Biology: Microbiology, Ludwig-Maximilians-Universität München, Germany
9 figures, 1 table and 1 additional file

Figures

FhuC is needed for hemoglobin (Hb)-dependent proliferation of S. aureus.

One-hundred µl (A, B) or 500 µl (C) of bacterial cultures were grown with human Hb or FeSO4 as the sole source of iron in 96-well (A, B) or 48-well (C) format and OD600 was monitored over time. For reasons of clarity, values taken every 2 hr are displayed. (A, B) S. aureus USA300 JE2 wild type (WT) and USA300 JE2 fhuC::Erm. Means and SD of six experiments are shown. (C) S. aureus Newman ΔfhuC was complemented using a plasmid expressing FhuC from the native promotor (pRB473:fhuC). Newman WT pRB473, ΔfhuC pRB473, and ΔfhuC pRB473:fhuC. Means and SD of three experiments are shown. (A, C) Statistical analysis comparing the WT strains and the fhuC mutants was performed using GraphPad Prism 9 Student’s unpaired t-test. **p<0.01, ***p<0.001.

Figure 1—source data 1

FhuC is needed for hemoglobin (Hb)-dependent proliferation of S. aureus.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig1-data1-v2.zip
Figure 2 with 1 supplement
FhuC interacts directly with IsdF.

(A, D, E) Escherichia coli BTH101 was co-transformed with pUT18C:fhuC and pKT25 vectors expressing permeases of interest. Where protein-protein interactions occur, the T25 and T18 catalytic domains of adenylate cyclase dimerize forming an active enzyme which produces cAMP. This activates LacZ expression leading to X-Gal degradation and blue signals on indicator plates. (A) Positive control, leucine zippers (zip). Negative control, empty vectors (pKT25+pUT18C) (-). (B) Schematic representation of the IsdF topology prediction using TOPCONS. The amino acids marking the transmembrane domains (TM) are shown with the conserved A213 and G217 indicated by yellow asterisks. Truncations are indicated in red. (C) IsdF structure prediction using Alphafold with visualization using PyMOL. The coupling helix is shown in red with the conserved A231 and G217 in yellow. The N-terminus is in cyan and the C-terminus in green. (D) Bacterial adenylate cyclase two-hybrid (BACTH) analysis of FhuC and IsdF with single and double amino acid substitutions as well as with the MntB_CHisdF fusion protein (coupling helix IsdF). (E) BACTH analysis of FhuC and truncated IsdF derivatives.

Figure 2—figure supplement 1
FhuC interaction with iron permeases and topology predictions.

(A) E. coli BTH101 co-transformed with pUT18C:fhuC and pKT25 vectors expressing permeases of interest. Protein-protein interactions leads to β-galactosidase activity. Negative control, empty vectors pKT25+pUT18C. Means and SD of three independent experiments are shown. Statistical analysis, one-way ANOVA followed by Dunett’s test for multiple comparisons was performed using GraphPad Prism 9. (B) TOPCONS modeling of IsdF topology with conserved alanine and glycine residues highlighted in yellow. (B) Clustal Omega sequence alignment of predicted coupling helices of FhuB, FhuG, HtsB, HtsC, SirB, SirC, and IsdF. Conserved alanine and glycine residues are highlighted in yellow.

Figure 2—figure supplement 1—source data 1

FhuC interaction with iron permeases and topology predictions.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig2-figsupp1-data1-v2.zip
Figure 3 with 1 supplement
IsdF localizes within functional membrane microdomains (FMMs) and interacts directly with flotillin A (FloA).

S. aureus Newman FloA-His pRB474:isdF-3xFLAG membranes were isolated and (A, B) separated into detergent-resistant membrane (DRM) and detergent-sensitive membrane (DSM) fractions or (C) solubilized with 1% n-dodecyl-β-D-maltopyranosid (DDM) overnight and co-precipitated using Ni-NTA affinity chromatography. (A) Coomassie blue-stained gel of DRM and DSM fractions (equal amounts loaded). (B) Immunoblot analysis and quantification of IsdF in DRM and DSM fractions using anti-FLAG antibody and LI-COR infrared technology. An example of the IsdF-3xFLAG bands in the DRM and DSM fractions is shown. Quantification of signals were calculated as a percentage of the total signal (DRM+DSM). Means and SD of three independent experiments are shown. (C) Co-precipitation analysis using anti-FLAG antibody for detection of IsdF-3xFLAG (pRB474:isdF-3xFLAG) that co-eluted with FloA-His or FloA WT. An example of the IsdF-3xFLAG bands that co-eluted with FloA-His and FloA WT are shown. Quantification of FloA-His IsdF-3xFLAG signals in immunoblots was normalized to FloA WT strain signals (set to 1). Means and SD of four independent experiments are shown. Statistical analysis (Student’s unpaired t-test) was performed using GraphPad Prism 8.

Figure 3—source data 1

IsdF localizes within functional membrane microdomains (FMMs) and interacts directly with flotillin A (FloA).

https://cdn.elifesciences.org/articles/85304/elife-85304-fig3-data1-v2.zip
Figure 3—figure supplement 1
Input control for co-immunoprecipitation of flotillin A (FloA) and IsdF.

Membranes of S. aureus Newman FloA-His pRB474:isdF-3xFLAG or FloA WT pRB474:isdF-3xFLAG were purified and analyzed prior to Ni-NTA purification. Equal volumes of samples were analyzed by SDS-PAGE and western blotting. Anti-FLAG antibodies were used to detect IsdF-3xFLAG and quantified using LI-COR infrared technology. Signals derived from the FloA WT strain were set to 1 and signals derived from the FloA-His strain are expressed in relation to this value. Means and SD of four independent experiments are shown. Statistical analysis was performed using GraphPad Prism 8 unpaired t-test.

Figure 3—figure supplement 1—source data 1

Input control fro co-immunoprecipitation of flotillin A (FloA) and IsdF.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig3-figsupp1-data1-v2.zip
Flotillin A (FloA) is crucial for spatial organization of IsdF in the membrane of S. aureus.

(A) Examples of a fluorescence micrograph of S. aureus Newman floA-SNAP pCQ11:isdF-mNeongreen. Green: IsdF-mNeongreen. Red: FloA-SNAP-TMR. Scale bars, 1 µm. (B) Quantification of the proximity of IsdF-mNeongreen fluorescence maxima and FloA-SNAP-TMR fluorescence maxima. The distance of each FloA-SNAP-TMR maximum to the nearest IsdF-mNeongreen maximum was measured with pixel (px) accuracy (1 px=0.0645 µm). The histogram shows the relative distribution of determined distances. Bars show means and SD of three independent biological replicates. Total number of maxima measured was n≥876 per replicate for each labeled protein. n≥293 cells per replicate. (C) An example of a fluorescence micrograph of S. aureus Newman floA-SNAP pCQ11:isdF-mNeongreen, ΔfloA pCQ11:isdF-mNeongreen, and floA_R pCQ11:isdF-mNeongreen. Scale bars, 1 µm. (D) Quantification of IsdF-Neongreen fluorescence intensity of individual cells. The bar shows the means and SD of three independent biological experiments. n≥241 cells analyzed per strain. Data was normalized to the respective FloA-SNAP replicate mean. Statistical significance was determined using unpaired two-tailed Student‘s t-test with 95% confidence interval.

Figure 4—source data 1

Flotillin A (FloA) is crucial for spatial organization of IsdF in the membrane of S. aureus.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig4-data1-v2.zip
Figure 5 with 1 supplement
Flotillin A (FloA) and functional membrane microdomains (FMMs) are needed for proliferation with hemoglobin.

(A–D) Strains were grown in iron-limited medium (A: 100 µl in 96-well plates; B–D: 500 µl in 48-well plates). (A) Growth of S. aureus USA300 JE2 WT, ΔfloA::Erm and floA_Revertant (floA_R) in the presence of 1 µg/ml human hemoglobin (hHb). For reasons of clarity, values after 24 hr are displayed. Means and SD of four experiments are shown. (B) Growth of S. aureus Newman WT, Δisd, ΔfloA, and ΔcrtM mutants. Strains were grown in the presence of 1 µg/ml hHb. Values after 16 hr are displayed. Means and SD of three experiments are shown. (C,D) Newman WT (C) and ΔfhuC (D) were grown in the presence of 10 µM zaragozic acid (ZA) and 2.5 µg/ml hHb. Values taken every 2 hr are displayed. Means and SD of four experiments are shown. (A,B) Statistical analysis: Student’s one-way ANOVA followed by Dunett’s test for multiple comparisons was performed using GraphPad Prism 9. (C,D) Statistical analysis: Student’s unpaired t-test was performed using GraphPad Prism 8. *p<0.05, **p<0.01, ***p<0.001.

Figure 5—source data 1

Flotillin A (FloA) and functional membrane microdomains (FMMs) are needed for proliferation with hemoglobin.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig5-data1-v2.zip
Figure 5—figure supplement 1
FeSO4 growth controls of floA and functional membrane microdomain (FMM)-deficient mutants.

(A–D) Strains were grown in iron-limited medium (A: 100 µl in 96-well plates; B–D: 500 µl in 48-well plates) in the presence of 20 µM FeSO4. Cultures were inoculated to an OD600=0.005 and OD600 was monitored every 15 min at 37°C orbital shaking using an Epoch2 plate reader. (A) Growth of S. aureus USA300 JE2 WT, ΔfloA::Erm, and floA_Revertant (floA_R). For reasons of clarity, values after 24 hr are displayed. Means and SD of four experiments are shown. (B) Growth of S. aureus Newman WT, Δisd, ΔfloA, and ΔcrtM mutants. Values after 16 hr are displayed. Means and SD of three experiments are shown. (C,D) Newman WT (C) and ΔfhuC (D) were grown in the presence of 10 µM zaragozic acid (ZA) and FeSO4. Values taken every 2 hr are displayed. Means and SD of four experiments are shown.

Figure 5—figure supplement 1—source data 1

FeSO4 growth controls of floA and functional membrane microdomain (FMM)-deficient mutants.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig5-figsupp1-data1-v2.zip
Figure 6 with 1 supplement
Growth using siderophores is independent of functional membrane microdomains (FMMs).

Newman WT, ΔhtsABC, ΔsirABC, ΔfhuCBG, ΔfhuC, and ΔfloA were grown in the presence of 5.7% spent medium of S. aureus USA300 JE2Δsbn (containing staphyloferrin A) (A), 9.1% spent medium of USA300 JE2 Δsfa (containing staphyloferrin B) (B), 200 ng/ml aerobactin (C) or 200 ng/ml ferrichrome (D). Strains were grown in 500 µl of iron-limited medium in 48-well plates. For reasons of clarity, values after 12 hr (A, B) or 16 hr (C, D) are displayed. Means and SD of three experiments are shown. Statistical analysis: Student’s one-way ANOVA followed by Dunett’s test for multiple comparisons was performed using GraphPad Prism 9.

Figure 6—source data 1

Growth using siderophores is independent of functional membrane microdomains (FMMs).

https://cdn.elifesciences.org/articles/85304/elife-85304-fig6-data1-v2.zip
Figure 6—figure supplement 1
FeSO4 growth controls of iron transporter and floA mutants.

Newman WT, ΔhtsABC, ΔsirABC, ΔfhuCBG, ΔfhuC, and ΔfloA were grown in the presence 20 µM FeSO4. Strains were inoculated in 500 µl iron-limited medium in 48-well plates. For reasons of clarity, values after 12 hr (A) or 16 hr (B) are displayed. Means and SD of three experiments are shown.

Figure 6—figure supplement 1—source data 1

FeSO4 growth controls of iron transporter and floA mutants.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig6-figsupp1-data1-v2.zip
Sortase function does not depend on functional membrane microdomains (FMMs).

S. aureus Newman Δspa, ΔspaΔsrtA::Erm, ΔspaΔfloA::Erm, and ΔspaΔcrtM::Erm cells were grown in iron-limited medium and treated with lysostaphin to gain cell wall (CW) and membrane (M) fractions. Fractions were analyzed by SDS-PAGE and western blotting. IsdA was detected using polyclonal anti-IsdA antibodies.

Figure 7—source data 1

Sortase function does not depend on functional membrane microdomains (FMMs).

https://cdn.elifesciences.org/articles/85304/elife-85304-fig7-data1-v2.zip
Flotillin A (FloA) is needed for iron-regulated surface determinant (Isd)-dependent proliferation in S. lugdunensis.

(A) Schematic representation of the isd locus in S. lugdunensis N920143. Membrane transporters IsdEFL and LhaSTA in dark gray. Fur boxes are indicated. This figure was created with https://www.biorender.com/. (B, C) S. lugdunensis N920143 WT, ΔfloA, Δlha, Δisd, and ΔlhaΔfloA were grown in 500 µl of iron-limited medium in the presence of 2.5 µg/ml human hemoglobin (hHb) (B) or 20 µM FeSO4 (C) as the sole source of iron in 48-well plates. Values taken every 2 hr are displayed. Means and SD of three experiments are shown.

Figure 8—source data 1

Flotillin A (FloA) is needed for iron-regulated surface determinant (Isd)-dependent proliferation in S. lugdunensis.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig8-data1-v2.zip
Proposed model of heme funneling over the S. aureus cell envelope.

Cell wall (CW) and membrane of a S. aureus are shown. Heme transfer is indicated by red arrows. The surface-exposed receptors (IsdB and IsdH) extract heme from host hemoproteins and guide it to IsdA and IsdC. We propose that functional membrane microdomains (FMMs) allow structural alignment of IsdC and the membrane receptor IsdEF. Alternatively, the IsdEF complex might be unstable in an FMM or flotillin A (FloA)-deficient strain. This figure was created with https://www.biorender.com/.

Figure 9—source data 1

Proposed model of heme funneling over the S. aureus cell envelope.

https://cdn.elifesciences.org/articles/85304/elife-85304-fig9-data1-v2.zip

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Escherichia coli)BTH101BACTH System (Euromedex)Used for BACTH assay; F-, cya-99, araD139,
galE15, galK16, rpsL1
(Str r
), hsdR2, mcrA1, mcrB1
Strain, strain background (Escherichia coli)BTH101 pKT25+pUT18CThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:zip+pUT18C:zipThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:fhuB+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:mntB+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_A213F+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_G217F+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_A+G_F+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:mntB_CHisdF +pU18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_short_1+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_short_2+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_short_3+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)BTH101 pKT25:isdF_short_4+pUT18C:fhuCThis studyBACTH assay
Strain, strain background (Escherichia coli)SA08BMonk et al., 2015Used for cloning of pIMAY, pRB474
and pRB473 plasmids; DC10BΩPhelp-
hsdMS (CC8-2) (SAUSA300_1751)
of NRS384 integrated between
the atpI and gidB genes
Strain, strain background (Escherichia coli)SL01BHeilbronner et al., 2013Used for cloning of pIMAY for
transformations of S. lugdunensis;
DC10B hsdMS+ (S. lugdunensis
N920143 (CC1))
Strain, strain background (Staphylococcus aureus)USA300 JE2Fey et al., 2013WT
Strain, strain background (Staphylococcus aureus)USA300 JE2 ΔsbnThis studyMarkerless deletion of the entire
sbn locus (staphyloferrin B
biosynthesis genes; sbnA-I)
Strain, strain background (Staphylococcus aureus)USA300 JE2 ΔsfaThis studyMarkerless deletion of the entire
sfa locus (staphyloferrin
A biosynthesis genes; sfaA-D)
Strain, strain background (Staphylococcus aureus)USA300 JE2 fhuC::ErmFey et al., 2013Nebraska transposon library
mutant ΔfhuC (SAUSA300_0633)
Strain, strain background (Staphylococcus aureus)USA300 JE2 floA::ErmFey et al., 2013Nebraska transposon library
mutant ΔfloA (SAUSA300_1533)
Strain, strain background (Staphylococcus aureus)USA300 JE2 floA_RThis studyGenomic complementation of the
Nebraska transposon library mutant
floA::Erm with floA
Strain, strain background (Staphylococcus aureus)COLGill et al., 2005WT
Strain, strain background (Staphylococcus aureus)NewmanLorenz and Duthie, 1952WT
Strain, strain background (Staphylococcus aureus)Newman ΔisdThis studyMarkerless deletion mutant
of the entire isd locus
Strain, strain background (Staphylococcus aureus)Newman ΔfhuThis studyMarkerless deletion mutant of
the entire fhu (fhuCBG) locus
Strain, strain background (Staphylococcus aureus)Newman ΔhtsThis studyMarkerless deletion mutant of
the entire hts (htsABC) locus
Strain, strain background (Staphylococcus aureus)Newman ΔsirThis studyMarkerless deletion mutant of
the entire sir (sirABC) locus
Strain, strain background (Staphylococcus aureus)Newman ΔfhuCThis studyMarkerless deletion mutant of fhuC
Strain, strain background (Staphylococcus aureus)Newman ΔfloAThis studyMarkerless deletion mutant of floA
Strain, strain background (Staphylococcus aureus)Newman ΔcrtMWieland et al., 1994Deletion mutant of crtM by
insertion of Cm resistance gene
Strain, strain background (Staphylococcus aureus)Newman WT pRB473This studyEmpty vector control
Strain, strain background (Staphylococcus aureus)Newman ΔfhuC pRB473This studyEmpty vector control
Strain, strain background (Staphylococcus aureus)Newman ΔfhuC pRB473:fhuCThis studyExpression plasmid for fhuC under its native promotor
Strain, strain background (Staphylococcus aureus)Newman ΔspaThis studyMarkerless deletion mutant of spa
Strain, strain background (Staphylococcus aureus)Newman Δspa srtA::ErmThis studyPhage transduction from the Nebraska
transposon library mutant srtA::Erm
(SAUSA300_2467) into Newman Δspa
Strain, strain background (Staphylococcus aureus)Newman Δspa floA::ErmThis studyPhage transduction from the Nebraska
transposon library mutant floA::Erm
(SAUSA300_1533) into Newman Δspa
Strain, strain background (Staphylococcus aureus)Newman Δspa crtM::ErmThis studyPhage transduction from the Nebraska
transposon library mutant crtM::Erm
(SAUSA300_2499) into Newman Δspa
Strain, strain background (Staphylococcus aureus)Newman WT pRB474:isdF-3xFLAGThis studyExpression plasmid for isdF-3xFLAG
Strain, strain background (Staphylococcus aureus)Newman floA-6xHis pRB474:isdF-3xFLAGThis studyInsertion of linker+6xHis-tag C-terminally
of floA; expression plasmid for isdF-3xFLAG
Strain, strain background (Staphylococcus aureus)Newman floA-SNAP pCQ11:isdF-mNeongreenThis studyInsertion of SNAP tag C-terminally of floA;
expression plasmid for isdF-mNeongreen
Strain, strain background (Staphylococcus aureus)Newman ΔfloA pCQ11:isdF-mNeongreenThis studyMarkerless deletion of floA; expression
plasmid for isdF-mNeongreen
Strain, strain background (Staphylococcus aureus)Newman floA_R pCQ11:isdF-mNeongreenThis studyGenomic complementation of the ΔfloA
mutant; expression plasmid for isdF-mNeongreen
Strain, strain background (Staphylococcus lugdunensis)N920143Heilbronner et al., 2011WT
Strain, strain background (Staphylococcus lugdunensis)N920143 ΔisdZapotoczna et al., 2012Markerless deletion mutant
of the entire isd locus
Strain, strain background (Staphylococcus lugdunensis)N920143 ΔlhaJochim et al., 2020Markerless deletion mutant of lhaSTA
Strain, strain background (Staphylococcus lugdunensis)N920143 ΔlhaΔfloAThis studyMarkerless deletion
mutant of lhaSTA and floA
Biological sample (Human)Human hemoglobinOwn purification (see Materials and methods)Sex male
AntibodyMouse monoclonal anti-FLAG M2SigmaF3165WB (1:10,000)
AntibodyPolyclonal IRDye 800CW goat anti-mouse IgG secondary antibodyLI-COR926-32210WB (1:10,000)
AntibodyPolyclonal rabbit serum anti-IsdAProf. J. GeogheganWB (1:5000)
AntibodyPolyclonal IRDye 680RD goat anti-rabbit IgG secondary antibodyLI-COR926-68071WB (1:10,000)
Recombinant DNA reagentpIMAY (plasmid)Monk et al., 2012E. coli/Staphylococcus thermo-
sensitive vector for allelic
replacement in S. aureus
Recombinant DNA reagentpIMAY:ΔsbnThis studyPlasmid for the deletion
of the entire sbn locus
Recombinant DNA reagentpIMAY:ΔsfaThis studyPlasmid for the deletion of
the entire sfa locus
Recombinant DNA reagentpIMAY:ΔfloA complementationThis studyPlasmid for the genomic reversion
of in USA300 JE2
floA::Erm and Newman ΔfloA
Recombinant DNA reagentpIMAY:ΔisdThis studyPlasmid for the deletion
of the entire isd locus
Recombinant DNA reagentpIMAY:ΔfhuThis studyPlasmid for the deletion
of the entire fhu locus
Recombinant DNA reagentpIMAY:ΔhtsThis studyPlasmid for the deletion
of the entire hts locus
Recombinant DNA reagentpIMAY:ΔsirThis studyPlasmid for the deletion
of the entire sir locus
Recombinant DNA reagentpIMAY:ΔfhuCThis studyPlasmid for the
deletion of fhuC
Recombinant DNA reagentpIMAY:ΔfloAThis studyPlasmid for the
deletion of floA
Recombinant DNA reagentpIMAY:ΔspaThis studyPlasmid for the
deletion of spa
Recombinant DNA reagentpIMAY:ΔfloAThis studyPlasmid for the deletion
of floA in S. lugdunensis N920143
Recombinant DNA reagentpIMAY:floA-6xHisThis studyPlasmid for the addition
of 6xHis C-terminally to floA
Recombinant DNA reagentpIMAY:floA-SNAPThis studyPlasmid for the addition of
SNAP C-terminally to floA
Recombinant DNA reagentpRB473 (plasmid)Brückner, 1992Expression plasmid
without a promotor
Recombinant DNA reagentpRB473:fhuCThis studyfhuC expressing plasmid
under its native promotor (fur box)
Recombinant DNA reagentpRB474 (plasmid)Brückner, 1992Expression plasmid with
constitutive promotor
Recombinant DNA reagentpRB474:isdF-3xFLAGThis studyisdF-3xFLAG expressing plasmid
Recombinant DNA reagentpCQ11:snapLund et al., 2018Used as template for SNAP
amplification PCR
Recombinant DNA reagentpCQ11:gfpC.Quiblier and B. Berger-BächiBackbone for pCQ11:mNeongreen
Recombinant DNA reagentpCQ11:mNeongreenThis studyBackbone for pCQ11
:isdF-mNeongreen
Recombinant DNA reagentpLOM-S-mNeongreen-EC18153Addgene plasmid# 137075mNeongreen template
Recombinant DNA reagentpCQ11:isdF-mNeongreenThis studyisdF with C-terminal
mNeongreen fusion; IPTG inducible
Recombinant DNA reagentpKT25 (plasmid)BACTH System (Euromedex)BACTH assay plasmid,
N-terminal T25 fragment
Recombinant DNA reagentpKT25:fhuBThis studyT25 fragment N-terminally of fhuB
Recombinant DNA reagentpKT25:isdFThis studyT25 fragment N-terminally of isdF
Recombinant DNA reagentpKT25:mntBThis studyT25 fragment N-terminally of mntB
Recombinant DNA reagentpKT25:zipBACTH System (Euromedex)T25 fragment N-terminally of zip; positive control
Recombinant DNA reagentpKT25:isdF_short1This studyT25 fragment N-terminally of
isdF_short1: truncated C-terminus
Recombinant DNA reagentpKT25:isdF_short2This studyT25 fragment N-terminally of
isdF_short2: truncated C-terminus+fourth cytosolic loop
Recombinant DNA reagentpKT25:isdF_short3This studyT25 fragment N-terminally of
isdF_short3: truncated C-terminus+third cytosolic loop
Recombinant DNA reagentpKT25:isdF_short4This studyT25 fragment N-terminally of
isdF_short4: truncated C-terminus+second
cytosolic loop
Recombinant DNA reagentpKT25:isdF_A213FThis studyT25 fragment N-terminally of
isdF: alanine position 213
exchanged to phenylalanine
Recombinant DNA reagentpKT25:isdF_G217FThis studyT25 fragment N-terminally of isdF:
glycine position 217 exchanged to phenylalanine
Recombinant DNA reagentpKT25:isdF_A+G_FThis studyT25 fragment N-terminally of isdF:
alanine (213)+glycine (217) exchanged to phenylalanines
Recombinant DNA reagentpKT25:mntB_CHisdFThis studyT25 fragment N-terminally of mntB;
coupling helix of mntB exchanged
to the one from isdF
Recombinant DNA reagentpUT18CBACTH System (Euromedex)BACTH assay plasmid, N-terminal T18 fragment
Recombinant DNA reagentpUT18C:fhuCThis studyT18 fragment N-terminally of fhuC
Recombinant DNA reagentpUT18C:zipBACTH System (Euromedex)T18 fragment N-terminally of zip; positive control
Recombinant DNA reagentpRB474:mprFdelCysflagSlavetinsky et al., 2022Used as template for 3xFLAG amplification PCR
Sequence-based reagentΔsbn_PF-A_SmaIThis studyPCR primerPrimer for ΔsbnA-I fragment using pIMAY;
CACCTAAAGATCCCGGGACGTCAGTGGC
Sequence-based reagentΔsbn_PR-BThis studyPCR primerPrimer for ΔsbnA-I fragment using pIMAY;
CATAGGTGTTTGCCCTACAGAATCTAAC
Sequence-based reagentΔsbn_PF-CThis studyPCR primerPrimer for ΔsbnA-I fragment using pIMAY;
CTGTAGGGCAAACACCTATGTAGTTTTACTGTGATGTTGAGGGAAATA
Sequence-based reagentΔsbn_PR-D_KpnIThis studyPCR primerPrimer for ΔsbnA-I fragment using pIMAY;
AAATCAGCAAGGTACCACCAATCAGCC
Sequence-based reagentΔsfaDABC_PF-A_KpnIThis studyPCR primerPrimer for ΔsfaDABC fragment using pIMAY;
GATCGGTACCAGTATCTTTAGTTGATGATTCT
Sequence-based reagentΔsfaDABC_PR-BThis studyPCR primerPrimer for ΔsfaDABC fragment using pIMAY;
TAATATATTTATCAATAAGTCTAAGTTGACA
Sequence-based reagentΔsfaDABC_PF-CThis studyPCR primerPrimer for ΔsfaDABC fragment using pIMAY;
ACTTATTGATAAATATATTATAAGGTTATAGAATTTTATTAATCGT
Sequence-based reagentΔsfaDABC_PR-DThis studyPCR primerPrimer for ΔsfaDABC fragment using pIMAY;
CGGAATTCTTCTATTGGTAGTGTAAGTTGGATCA
Sequence-based reagentΔfloA_PF-A_SacIThis studyPCR primerPrimer for floA::Erm and ΔfloA complementation
fragment using pIMAY (floA_R);
CCAAGGAGCTCTCAATATGCATTCTATC
Sequence-based reagentΔfloA comp._PR-B_SmaIThis studyPCR primerPrimer for floA::Erm and ΔfloA complementation
fragment using pIMAY (floA_R);
CTTCACCAACCCGGGCGATGATTGTTTC
Sequence-based reagentΔfloA comp._PF-C_SmaIThis studyPCR primerPrimer for floA::Erm and ΔfloA complementation
fragment using pIMAY (floA_R);
GAAACAATCATCGCCCGGGTTGGTGAAG
Sequence-based reagentΔfloA_PR-D_KpnIThis studyPCR primerPrimer for floA::Erm and ΔfloA
complementation fragment using pIMAY (floA_R);
TTTTCGGTACCAATGTCAGTACGAATC
Sequence-based reagentΔisd_PF-A_KpnIThis studyPCR primerPrimer for ΔisdB-G fragment using pIMAY;
TAAAGGGAACAAAAGCTGGGTACCAT
GCAGAGGACTTACTTGCGTAAAG
Sequence-based reagentΔisd_PR-BThis studyPCR primerPrimer for ΔisdB-G fragment using pIMAY;
TAAATTAACAAATTTTAATTGGCGGATG
Sequence-based reagentΔisd_PF-CThis studyPCR primerPrimer for ΔisdB-G fragment using pIMAY;
ATTAAAATTTGTTAATTTAAGAATTTAAA
GAGGTTGCAGTACTTGTTATG
Sequence-based reagentΔisd_PR-D_SacIThis studyPCR primerPrimer for ΔisdB-G fragment using pIMAY;
CGACTCACTATAGGGCGAATTGGAGCTC
TCAATTAAATGCACACCTTCAATTAAAGC
Sequence-based reagentΔfhu_PF-A_SacIThis studyPCR primerPrimer for ΔfhuCBG fragment using pIMAY;
AATACCTCGAGCTCAGCACGCCATATG
CTTTGCTTTTCTTCGAT
Sequence-based reagentΔfhu_PR-BThis studyPCR primerPrimer for ΔfhuCBG fragment using pIMAY;
CATAATTTCCCTACTTTCAATAAAATTCTT
Sequence-based reagentΔfhu_PF-CThis studyPCR primerPrimer for ΔfhuCBG fragment using pIMAY;
ATTTTATTGAAAGTAGGGAAATTATG
TAGTGTCAATGGACACAACTTATTGCTATG
Sequence-based reagentΔfhu_PR-D_KpnIThis studyPCR primerPrimer for ΔfhuCBG fragment using pIMAY;
TGCTTTggTAcCTTCTAATATTTTATCAGGTGTAGG
Sequence-based reagentΔhts_PF-A_SacIThis studyPCR primerPrimer for ΔhtsABC fragment using pIMAY;
GCACgagCTCATTCGATGTATATGAAAAATTTAC
Sequence-based reagentΔhts_PR-BThis studyPCR primerPrimer for ΔhtsABC fragment using pIMAY;
CATCGTTCCACTCCTTAATATGTATAAC
Sequence-based reagentΔhts_PF-CThis studyPCR primerPrimer for ΔhtsABC fragment using pIMAY;
TATACATATTAAGGAGTGGAACGATGTA
ACTAACATATGATTAGAGTTTAAAAAAG
Sequence-based reagentΔhts_PR-D_KpnIThis studyPCR primerPrimer for ΔhtsABC fragment using pIMAY;
GTCAGGTacCAATTTATCTTTTAAAATAG
Sequence-based reagentΔsir_PF-A_SacIThis studyPCR primerPrimer for ΔsirABC fragment using pIMAY;
GTTTTgAgCtCTTGATTTTAGCTATCATTG
Sequence-based reagentΔsir_PR-BThis studyPCR primerPrimer for ΔsirABC fragment using pIMAY;
CATTGACTAATTAGCCTCCTTCGTG
Sequence-based reagentΔsir_PF-CThis studyPCR primerPrimer for ΔsirABC fragment using pIMAY;
AGGAGGCTAATTAGTCAATGTAACG
ATATTATTAAAACAAAATG
Sequence-based reagentΔsir_PR-D_KpnIThis studyPCR primerPrimer for ΔsirABC fragment using pIMAY;
CTGATGgtAccAATAAGTCAGTAATATAAATTC
Sequence-based reagentPF-A_ΔfhuC_SacIThis studyPCR primerPrimer for ΔfhuC fragment using pIMAY;
AATACCTCGAGCTCAGCACGCCATAT
GCTTTGCTTTTCTTCGAT
Sequence-based reagentPR-B_ΔfhuCThis studyPCR primerPrimer for ΔfhuC fragment using pIMAY;
CATAATTTCCCTACTTTCAATAAAATTCTT
Sequence-based reagentPF-C_ΔfhuCThis studyPCR primerPrimer for ΔfhuC fragment using pIMAY;
TTATTGAAAGTAGGGAAATTAT
GTAATTAAGTAAGTTAATAT
Sequence-based reagentPR-D_ΔfhuC_KpnIThis studyPCR primerPrimer for ΔfhuC fragment using pIMAY;
ATGGTAAGTTGGGTACCCAATTGTTAA
TATAATGAATAACGCAATACCA
Sequence-based reagentΔfloA_PF-A_SacIThis studyPCR primerPrimer for ΔfloA fragment using pIMAY;
CCAAGGAGCTCTCAATATGCATTCTATC
Sequence-based reagentΔfloA_PR-BThis studyPCR primerPrimer for ΔfloA fragment using pIMAY;
AAACATGGTATCGCTCCTTTTAATTAATC
Sequence-based reagentΔfloA_PF-CThis studyPCR primerPrimer for ΔfloA fragment using pIMAY;
AAAGGAGCGATACCATGTTTTAAGT
CGAGAGGTGATTAAATG
Sequence-based reagentΔfloA_PR-D_KpnIThis studyPCR primerPrimer for ΔfloA fragment using pIMAY;
TTTTCGGTACCAATGTCAGTACGAATC
Sequence-based reagentΔspa_PF-A_SacIThis studyPCR primerPrimer for Δspa fragment using pIMAY;
GAAAGAGCTCTTTTAATTCATATGGATGAC
Sequence-based reagentΔspa_PR-BThis studyPCR primerPrimer for Δspa fragment using pIMAY;
CATAATATAACGAATTATGTATTGCAATAC
Sequence-based reagentΔspa_PF-CThis studyPCR primerPrimer for Δspa fragment using pIMAY;
ACATAATTCGTTATATTATGTAAAAAC
AAACAATACACAACGATAG
Sequence-based reagentΔspa_PR-D_KpnIThis studyPCR primerPrimer for Δspa fragment using pIMAY;
CAGGTGGGGTACCAGCGAAACTTATTTCAC
Sequence-based reagentN9_PF-A_ΔfloA_SacIThis studyPCR primerPrimer for ΔfloA (for S. lugdunensis
N920143) fragment using pIMAY;
CTTTATTGGAGCTCCAGTAATAGGCTTTTTTGGCATAG
Sequence-based reagentN9_PR-B_ΔfloAThis studyPCR primerPrimer for ΔfloA (for S. lugdunensis N920143)
fragment using pIMAY;
CATTAAATCACTCCTATAAATTAATCTATC
Sequence-based reagentN9_PF-C_ΔfloAThis studyPCR primerPrimer for ΔfloA (for S. lugdunensis N920143)
fragment using pIMAY;
TTTATAGGAGTGATTTAATGTAATTA
AAGGGGTGATGTCATGAAC
Sequence-based reagentN9_PR-D_ΔfloA_KpnIThis studyPCR primerPrimer for ΔfloA (for S. lugdunensis N920143)
fragment using pIMAY; CGAACAGGTACCAAA
TCATCCATAAGTGTATGTTC
Sequence-based reagentPF-A_FloA-6xHis_SacIThis studyPCR primerPrimer for floA-6xHis fragment including
linker+6xHis using pIMAY; ATATTGagCtcC
TTGTTGGTGGTGCTGGTGAAGAAAC
Sequence-based reagentPR-B_FloA-6xHisThis studyPCR primerPrimer for floA-6xHis fragment
including linker+6xHis using pIMAY;
GTGATGGTGATGGTGATGCGATCCT
CTATGTTCAGGTGACTCATCATCACTTTG
Sequence-based reagentPF-C_FloA-6xHisThis studyPCR primerPrimer for floA-6xHis fragment including
linker+6xHis using pIMAY;
CATAGAGGATCGCATCACCATCACCATC
ACTAAGTCGAGAGGTGATTAAATGAGTG
Sequence-based reagentPR-D_FloA-6xHis_KpnIThis studyPCR primerPrimer for floA-6xHis fragment including
linker+6xHis using pIMAY; TTTTCggTAcC
AATGTCAGTACGAATCGTTTTAATATC
Sequence-based reagentPF-A_FloA-SNAP_SacIThis studyPCR primerPrimer for floA-SNAP fragment using pIMAY;
ATATTGagCtcCTTGTTGGTGGTGCTGGTGAAGAAAC
Sequence-based reagentPR-B_FloA-SNAPThis studyPCR primerPrimer for floA-SNAP fragment using pIMAY;
ATTTCGCAATCTTTGTCCATATGTT
CAGGTGACTCATCATCACTTTG
Sequence-based reagentPF-SNAPThis studyPCR primerPrimer for floA-SNAP fragment using pIMAY;
ATGGACAAAGATTGCGAAATGAAACG
Sequence-based reagentPR-SNAPThis studyPCR primerPrimer for floA-SNAP fragment using pIMAY;
TCATCCCAGACCCGGTTTACCCAG
Sequence-based reagentPF-C_FloA-SNAPThis studyPCR primerPrimer for floA-SNAP fragment using pIMAY;
GTAAACCGGGTCTGGGATGAGTCGAGAGGTGATTAAATGAGTG
Sequence-based reagentPR-D_FloA-SNAP_KpnIThis studyPCR primerPrimer for floA-SNAP fragment using pIMAY;
TTTTCggTAcCAATGTCAGTACGAATCGTTTTAATATC
Sequence-based reagentmNeon-for (NheI, SmaI)This studyPCR primerPrimer for isdF-mNeongreen construct;
TTATGCTAGCTTAACCCGGGATGGCGTCGAAGG
Sequence-based reagentmNeon-rev (AscI)This studyPCR primerPrimer for isdF-mNeongreen construct;
TATAGGCGCGCCTCAACCTCCTTTATAGAG
Sequence-based reagentisdF-for (NheI)This studyPCR primerPrimer for isdF-mNeongreen construct;
GCTCGGCTAGCATGATGATAAAAAATAAAAAG
Sequence-based reagentisdF-rev (SmaI)This studyPCR primerPrimer for isdF-mNeongreen construct;
AATATCCCGGGGATTCGATTTCGTTGAC
Sequence-based reagentpcq11-seq2-forThis studyPCR primerPrimer for isdF-mNeongreen construct;
GTTGACTTTATCTACAAGG
Sequence-based reagentpcq11-seq2-revThis studyPCR primerPrimer for isdF-mNeongreen construct;
TCTCGAAAATAATAGAGGG
Sequence-based reagentPF_furbox + fhuC_SacIThis studyPCR primerPrimer for cloning of fur box+fhuC into pRB473;
AAAAGAGCTCTTAGTCAATAAGATTG
Sequence-based reagentPR_furbox + fhuC_HindIIIThis studyPCR primerPrimer for cloning of fur box+fhuC into pRB473;
ATTAACAAGCTTAATTAAGAATAAGCTCTG
Sequence-based reagentPF_474-RBS-IsdF_PstIThis studyPCR primerPrimer for cloning isdF-3xFLAG into pRB474;
ATGCCTGCAGaggaggattatgttATGA
TGATAAAAAATAAAAAGAAACTAC
Sequence-based reagentPR_474-IsdFThis studyPCR primerPrimer for cloning isdF-3xFLAG into pRB474;
CCGTCATGGTCTTTGTAGTCGAT
TCGATTTCGTTGACTTTGAC
Sequence-based reagentPF-3xFLAGThis studyPCR primerPrimer for cloning isdF-3xFLAG into pRB474;
GACTACAAAGACCATGACGGTGATTAT
Sequence-based reagentPR-474-3xFLAG_SacIThis studyPCR primerPrimer for cloning isdF-3xFLAG into pRB474;
TCTATgagctcTCATTTGTCATCGTCATCCTTg
Sequence-based reagentPF_FhuB_pKT25_PstIThis studyPCR primerPrimer for cloning fhuB into pKT25;
AAAACTGCAGTTAACATGACAAATA
Sequence-based reagentPR_FhuB_pKT25_EcoRIThis studyPCR primerPrimer for cloning fhuB into pKT25;
TGCGTGAATTCTTTGAACTAATCATAT
Sequence-based reagentPF_isdF_pKT25_PstIThis studyPCR primerPrimer for cloning isdF into pKT25;
GGATAAAAAATCTGCAGTTGATATGATGATA
Sequence-based reagentPR_isdF-pKT25_EcoRIThis studyPCR primerPrimer for cloning isdF into pKT25;
CACTAAACCAGGAATTCTACCGTTTTAGAT
Sequence-based reagentMntB_KT-PF_PstIThis studyPCR primerPrimer for cloning mntB into pKT25;
TAGTCAAAGGCTGCAGATAACATGTTAG
Sequence-based reagentMntB_PR_EcoRIThis studyPCR primerPrimer for cloning mntB into pKT25;
CTAATAATAAAGGTACTgAaTTcTcCATG
Sequence-based reagentPF_pKT_SmaIThis studyPCR primerPrimer for cloning mntB into pKT25;
GAAAACCCGGGCGTTACCCAACTTAATC
Sequence-based reagentPR_pKT_stop_SmaIThis studyPCR primerPrimer for cloning mntB into pKT25;
CCAGCCCGGGCGTTGTAAAACTACGG
Sequence-based reagentPF_IsdF_short_after MCS_KpnIThis studyPCR primerPrimer for cloning isdF_short1/2/3/4 into pKT25;
GTAGGGTACCGCCGTAGTTTTACAAC
Sequence-based reagentPR_IsdF_short_1_KpnIThis studyPCR primerPrimer for cloning isdF_short1 into pKT25;
TTGAggTaccCAAATTAAGTAAATTAG
Sequence-based reagentPR_IsdF_short_2_KpnIThis studyPCR primerPrimer for cloning isdF_short2 into pKT25;
GTAAggtaCCCCAACTAGCTTTCTAAC
Sequence-based reagentPR_IsdF_short_3_KpnIThis studyPCR primerPrimer for cloning isdF_short3 into pKT25;
TAGTAAAggtAccTTAGGGGACAATAG
Sequence-based reagentPR_IsdF_short_4_KpnIThis studyPCR primerPrimer for cloning isdF_short4 into pKT25;
AGAAgGtacCAATATAATTATTAAAAATGG
Sequence-based reagentPF_KT-IsdF_A213FThis studyPCR primerPrimer for cloning isdF_A213F into pKT25;
CGACATACAAtttCGAAGTATCGGTTTTAATATTGATCGTTACAGATGG
Sequence-based reagentPR_KT-IsdF_A213FThis studyPCR primerPrimer for cloning isdF_A213F into pKT25;
CCATCTGTAACGATCAATATTAAAACCGATACTTCGaaaTTGTATGTCG
Sequence-based reagentPF_KT-IsdF_G217FThis studyPCR primerPrimer for cloning isdF_G217F into pKT25;
CGACATACAAGCGCGAAGTATCttTTTTAATATTGATCGTTACAGATGG
Sequence-based reagentPR_KT-IsdF_G217FThis studyPCR primerPrimer for cloning isdF_G217F into pKT25;
CCATCTGTAACGATCAATATTAAAAaaGATACTTCGCGCTTGTATGTCG
Sequence-based reagentPF_KT-IsdF_A+G_FThis studyPCR primerPrimer for cloning isdF_A+G_F into pKT25;
CGACATACAAtttCGAAGTATCttTTTTAATATTGATCGTTACAGATGG
Sequence-based reagentPR_KT-IsdF_A+G_FThis studyPCR primerPrimer for cloning isdF_A+G_F into pKT25;
CCATCTGTAACGATCAATATTAAAAaaGATACTTCGaaaTTGTATGTCG
Sequence-based reagentMntB_KT-P-F (PstI)This studyPCR primerPrimer for cloning mntB_CHisdF into pKT25;
TAGTCAAAGGCTGCAGATAACATGTTAG
Sequence-based reagentPR_MntB-CHisdFThis studyPCR primerPrimer for cloning mntB_CHisdF into pKT25;
ACCGATACTTCGCGCTTGTATGTCGTCTAAATTTAGTAAATTATAGAAAATAATGATTAGAATAAGGACGATTGAACCAATCAC
Sequence-based reagentPF_MntB-CHisdFThis studyPCR primerPrimer for cloning mntB_CHisdF into pKT25; AATTTACTAAATTTAGACGACATACAAGCGCGAAGTATCGGTACGACGTTATTACATTACTTTGTGATGTTGTTACTCTCATTAG
Sequence-based reagentPR_pKT_stop_SmaIThis studyPCR primerPrimer for cloning mntB_CHisdF into pKT25;
CCAGCCCGGGCGTTGTAAAACTACGG
Sequence-based reagentPF_FhuC-SalIThis studyPCR primerPrimer for cloning fhuC into pUT18C;
AGAAAGAAGTCGACTGAAAGTAGGGAAATTATG
Sequence-based reagentPR_FhuC_EcoRIThis studyPCR primerPrimer for cloning fhuC into pUT18C;
TATTGAATTCCTTAATTAAGAATAAGCTCT
Commercial assay or kitBACTH System KitEuromedexCat. No.: EUK001
Commercial assay or kitCelLytic MEM protein extraction KitSigmaCE0050
Chemical compound, drugRPMI-1640 mediumSigmaR6504-10L
Chemical compound, drugBacto casamino acidsBD Biosciences223050
Chemical compound, drugEDDHALGC StandardsTRC-E335100-10MG
Chemical compound, drugZaragozic acid A trisodium saltSanta Cruz BiotechnologySC-302001
Chemical compound, drugONPGSigmaN1127
Chemical compound, drugDDMRothCN26.1
Chemical compound, drugProfinity IMAC Resin Ni-chargedBio-Rad1560135
OtherFerrichromeEMC MicrocollectionsFCHSee Materials and methods:
Growth in iron-limited medium
OtherAerobactinEMC MicrocollectionsFe-AEROSee Materials and methods:
Growth in iron-limited medium
OtherSNAP-Cell TMR-StarNew England BiolabsS9105SMaterials and methods:
Fluorescence microscopy

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lea Antje Adolf
  2. Angelika Müller-Jochim
  3. Lara Kricks
  4. Jan-Samuel Puls
  5. Daniel Lopez
  6. Fabian Grein
  7. Simon Heilbronner
(2023)
Functional membrane microdomains and the hydroxamate siderophore transporter ATPase FhuC govern Isd-dependent heme acquisition in Staphylococcus aureus
eLife 12:e85304.
https://doi.org/10.7554/eLife.85304