Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming

  1. Jie Yang
  2. Ruijun Tang
  3. Shiye Chen
  4. Yinan Chen
  5. Kai Yuan  Is a corresponding author
  6. Rui Huang  Is a corresponding author
  7. Liming Wang  Is a corresponding author
  1. Zhejiang University, China
  2. Xiangya Hospital Central South University, China
  3. Chongqing University, China
  4. Shenzhen Bay Laboratory, China

Abstract

Human health is facing a host of new threats linked to unbalanced diets, including high sugar diet (HSD), which contributes to the development of both metabolic and behavioral disorders. Studies have shown that diet-induced metabolic dysfunctions can be transmitted to multiple generations of offspring and exert long-lasting health burden. Meanwhile, whether and how diet-induced behavioral abnormalities can be transmitted to the offspring remains largely unclear. Here, we showed that ancestral HSD exposure suppressed sweet sensitivity and feeding behavior in the offspring in Drosophila. These behavioral deficits were transmitted through the maternal germline and companied by the enhancement of H3K27me3 modifications. PCL-PRC2 complex, a major driver of H3K27 trimethylation, was upregulated by ancestral HSD exposure, and disrupting its activity eliminated the transgenerational inheritance of sweet sensitivity and feeding behavior deficits. Elevated H3K27me3 inhibited the expression of a transcriptional factor Cad and suppressed sweet sensitivity of the sweet-sensing gustatory neurons, reshaping the sweet perception and feeding behavior of the offspring. Taken together, we uncovered a novel molecular mechanism underlying behavioral abnormalities spanning multiple generations of offspring upon ancestral HSD exposure, which would contribute to the further understanding of long-term health risk of unbalanced diet.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE216075 and GSE215756.All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures and supplementary figures.

The following data sets were generated

Article and author information

Author details

  1. Jie Yang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0833-9661
  2. Ruijun Tang

    Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiye Chen

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yinan Chen

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5543-3976
  5. Kai Yuan

    Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
    For correspondence
    yuankai@csu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7002-5703
  6. Rui Huang

    Center for Neurointelligence, Chongqing University, Chongqing, China
    For correspondence
    huangrui85@cqu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4656-1682
  7. Liming Wang

    Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
    For correspondence
    lmwang83@szbl.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7256-8776

Funding

National Key Research and Development Program of China (2019YFA0802400)

  • Liming Wang

National Key Research and Development Program of China (2019YFA0801900)

  • Liming Wang

National Natural Science Foundation of China (32071006)

  • Liming Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,191
    views
  • 463
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jie Yang
  2. Ruijun Tang
  3. Shiye Chen
  4. Yinan Chen
  5. Kai Yuan
  6. Rui Huang
  7. Liming Wang
(2023)
Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming
eLife 12:e85365.
https://doi.org/10.7554/eLife.85365

Share this article

https://doi.org/10.7554/eLife.85365

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.