Single cell preparations of Mycobacterium tuberculosis damage the mycobacterial envelope and disrupt macrophage interactions

  1. Ekansh Mittal
  2. Andrew T Roth
  3. Anushree Seth
  4. Srikanth Singamaneni
  5. Wandy Beatty
  6. Jennifer A Philips  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. Washington University Medical Center, United States

Abstract

For decades, investigators have studied the interaction of Mycobacterium tuberculosis (Mtb) with macrophages, which serve as a major cellular niche for the bacilli. Because Mtb are prone to aggregation, investigators rely on varied methods to disaggregate the bacteria for these studies. Here, we examined the impact of routinely used preparation methods on bacterial cell envelop integrity, macrophage inflammatory responses, and intracellular Mtb survival. We found that both gentle sonication and filtering damaged the mycobacterial cell envelope and markedly impacted the outcome of infections in mouse bone marrow-derived macrophages. Unexpectedly, sonicated bacilli were hyperinflammatory, eliciting dramatically higher TLR2-dependent gene expression and elevated secretion of IL-1β and TNF-α. Despite evoking enhanced inflammatory responses, sonicated bacilli replicated normally in macrophages. In contrast, Mtb that had been passed through a filter induced little inflammatory response, and they were attenuated in macrophages. Previous work suggests that the mycobacterial cell envelope lipid, phthiocerol dimycocerosate (PDIM), dampens macrophage inflammatory responses to Mtb. However, we found that the impact of PDIM depended on the method used to prepare Mtb. In conclusion, widely used methodologies to disaggregate Mtb may introduce experimental artifacts in Mtb-host interaction studies, including alteration of host inflammatory signaling, intracellular bacterial survival, and interpretation of bacterial mutants.

Data availability

RNA-seq data can be accessed in the Gene Expression Omnibus database (Accession GSE206485; ID: 200206485).

The following data sets were generated

Article and author information

Author details

  1. Ekansh Mittal

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9034-033X
  2. Andrew T Roth

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4239-7926
  3. Anushree Seth

    Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, United States
    Competing interests
    Anushree Seth, is currently employed with Auragent Bioscience LLC. The plasmonic-fluor technology used in the manuscript has been licensed by the Office of Technology Management at Washington University in St. Louis to Auragent Bioscience LLC..
  4. Srikanth Singamaneni

    Department of Mechanical Engineering and Materials Science, Washington University Medical Center, St Louis, United States
    Competing interests
    Srikanth Singamaneni, is an inventor on a provisional patent related to plasmonic-fluor technology, and the technology has been licensed by the Office of Technology Management at Washington University in St. Louis to Auragent Bioscience LLC. SS is a co-founder/shareholder of Auragent Bioscience LLC. SS along with Washington University may have financial gain through Auragent Bioscience LLC through this licensing agreement. These potential conflicts of interest have been disclosed and are being managed by Washington University in St. Louis..
  5. Wandy Beatty

    Department of Molecular Microbiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Jennifer A Philips

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    For correspondence
    philips.j.a@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9476-0240

Funding

NIAID/NIH (R01 AI087682)

  • Jennifer A Philips

NIAID/NIH (R01 AI30454)

  • Jennifer A Philips

National Cancer Institute -Innovative Molecular Analysis Technologies (R21CA236652)

  • Srikanth Singamaneni

National Science Foundation (CBET-1900277)

  • Srikanth Singamaneni

NIH/NHLBI (T32 HL007317-37)

  • Andrew T Roth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work with mice were approved by the Washington University School of Medicine Institutional Animal Care and Use Committee (IACUC protocol # 21-0245). Euthanasia was performed prior to bone marrow harvest in accordance with the 2020 AVMA Guidelines for the Euthanasia of Animals prior to tissue harvest.

Copyright

© 2023, Mittal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,231
    views
  • 431
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ekansh Mittal
  2. Andrew T Roth
  3. Anushree Seth
  4. Srikanth Singamaneni
  5. Wandy Beatty
  6. Jennifer A Philips
(2023)
Single cell preparations of Mycobacterium tuberculosis damage the mycobacterial envelope and disrupt macrophage interactions
eLife 12:e85416.
https://doi.org/10.7554/eLife.85416

Share this article

https://doi.org/10.7554/eLife.85416

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.

    1. Microbiology and Infectious Disease
    Julia A Hotinger, Ian W Campbell ... Matthew K Waldor
    Research Article

    Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen’s colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.