High-throughput mapping of single-neuron projection and molecular features by retrograde barcoded labeling

Abstract

Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.

Data availability

Raw gene expression, barcode count matrices and metadata were available from the Gene Expression Omnibus (GSE210174). The computational code used in the study is available at GitHub (https://github.com/MichaelPeibo/MERGE-seq-analysis). The data needed to evaluate the conclusions in the paper can be downloaded at https://figshare.com/projects/High-throughput_mapping_of_single-neuron_projection_and_molecular_features_by_retrograde_barcoded_labeling/150207. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials and source data files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Peibo Xu

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    michaelxupb@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Jian Peng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Tingli Yuan

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6676-8790
  4. Zhaoqin Chen

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hui He

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ziyan Wu

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ting Li

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaodong Li

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2459-8778
  9. Luyue Wang

    CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Le Gao

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Jun Yan

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shangjai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Wu Wei

    CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Chengyu T Li

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    tonylicy@lglab.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  14. Zhen-Ge Luo

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    luozhg@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5037-0542
  15. Yuejun Chen

    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    yuejunchen@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4625-2604

Funding

National Key Research and Development Program of China (2018YFA0108000)

  • Yuejun Chen

National Natural Science Foundation of China (32170806)

  • Yuejun Chen

National Natural Science Foundation of China (32130035)

  • Zhen-Ge Luo

Thousand Young Talents Program of China

  • Yuejun Chen

National Key Research and Development Program of China (2021ZD0202500)

  • Zhen-Ge Luo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted according to a protocol approved by the IACUC at the Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technol- ogy of the Chinese Academy of Sciences (Shanghai, China). (reference number for approval: NA-034-2022).

Copyright

© 2024, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,092
    views
  • 356
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peibo Xu
  2. Jian Peng
  3. Tingli Yuan
  4. Zhaoqin Chen
  5. Hui He
  6. Ziyan Wu
  7. Ting Li
  8. Xiaodong Li
  9. Luyue Wang
  10. Le Gao
  11. Jun Yan
  12. Wu Wei
  13. Chengyu T Li
  14. Zhen-Ge Luo
  15. Yuejun Chen
(2024)
High-throughput mapping of single-neuron projection and molecular features by retrograde barcoded labeling
eLife 13:e85419.
https://doi.org/10.7554/eLife.85419

Share this article

https://doi.org/10.7554/eLife.85419

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Jian Qiu, Margaritis Voliotis ... Martin J Kelly
    Research Article

    Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.

    1. Cell Biology
    2. Neuroscience
    Luis Sánchez-Guardado, Peyman Callejas Razavi ... Carlos Lois
    Research Article

    The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.