Homeostasis, injury and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt

  1. Louis Gall
  2. Carrie Duckworth
  3. Ferran Jardi
  4. Lieve Lammens
  5. Aimee Parker
  6. Ambra Bianco
  7. Holly Kimko
  8. David Mark Pritchard
  9. Carmen Pin  Is a corresponding author
  1. AstraZeneca, United Kingdom
  2. University of Liverpool, United Kingdom
  3. Janssen, Belgium
  4. Quadram Institute, United Kingdom

Abstract

The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43 and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation and migration and leads to loss of barrier integrity. During recovery, our in-silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.

Data availability

The current manuscript is a computational study. No data have been generated for this manuscript. Modelling code is uploaded as Source Code.zip file

Article and author information

Author details

  1. Louis Gall

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Louis Gall, Employee and shareholder of AstraZeneca Plc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1805-2357
  2. Carrie Duckworth

    Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ferran Jardi

    Preclinical Sciences and Translational Safety, Janssen, Beerse, Belgium
    Competing interests
    Ferran Jardi, Employee of Johnson & Johnson..
  4. Lieve Lammens

    Preclinical Sciences and Translational Safety, Janssen, Beerse, Belgium
    Competing interests
    Lieve Lammens, Employee and shareholder of Johnson & Johnson..
  5. Aimee Parker

    Gut Microbes and Health Programme, Quadram Institute, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ambra Bianco

    Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Ambra Bianco, Employee and shareholder of AstraZeneca Plc.
  7. Holly Kimko

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Holly Kimko, Employee and shareholder of AstraZeneca Plc.
  8. David Mark Pritchard

    Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7971-3561
  9. Carmen Pin

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    For correspondence
    carmen.pin@astrazeneca.com
    Competing interests
    Carmen Pin, Employee and shareholder of AstraZeneca Plc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8734-6167

Funding

European Federation of Pharmaceutical Industries and Associations (Innovative Medicines Initiative 2,No. 116030)

  • Louis Gall
  • Carrie Duckworth
  • Ferran Jardi
  • Lieve Lammens
  • David Mark Pritchard
  • Carmen Pin

Horizon 2020 Framework Programme (Innovative Medicines Initiative 2,No. 116030)

  • Louis Gall
  • Carrie Duckworth
  • Ferran Jardi
  • Lieve Lammens
  • David Mark Pritchard
  • Carmen Pin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in an Association for Assessment and Accreditation of Laboratory Animal Care approved rodent facility and in accordance with the applicable animal welfare guidelines and legislation. Experimental procedures were approved by the institutional ethics committee. Ten-week-old male C57/BL6Y mice were obtained from Charles River (France). Mice were housed in polysulfon cages with corncob bedding under standard conditions of room temperature (21{degree sign}C {plus minus} 2), relative humidity (55% {plus minus} 15) and a 12-h light cycle. Water and a certified rodent pelleted maintenance diet were supplied ad libitum. Nest material and rodent retreats were provided for environmental enrichment.

Copyright

© 2023, Gall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,119
    views
  • 183
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louis Gall
  2. Carrie Duckworth
  3. Ferran Jardi
  4. Lieve Lammens
  5. Aimee Parker
  6. Ambra Bianco
  7. Holly Kimko
  8. David Mark Pritchard
  9. Carmen Pin
(2023)
Homeostasis, injury and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt
eLife 12:e85478.
https://doi.org/10.7554/eLife.85478

Share this article

https://doi.org/10.7554/eLife.85478

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalio Reyes, Arthur D Lander, Marcos Nahmad
    Research Article

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between

    1. Computational and Systems Biology
    2. Neuroscience
    Sebastian Quiroz Monnens, Casper Peters ... Bernhard Englitz
    Research Advance

    Animal behaviour alternates between stochastic exploration and goal-directed actions, which are generated by the underlying neural dynamics. Previously, we demonstrated that the compositional Restricted Boltzmann Machine (cRBM) can decompose whole-brain activity of larval zebrafish data at the neural level into a small number (∼100-200) of assemblies that can account for the stochasticity of the neural activity (van der Plas et al., eLife, 2023). Here, we advance this representation by extending to a combined stochastic-dynamical representation to account for both aspects using the recurrent temporal RBM (RTRBM) and transfer-learning based on the cRBM estimate. We demonstrate that the functional advantage of the RTRBM is captured in the temporal weights on the hidden units, representing neural assemblies, for both simulated and experimental data. Our results show that the temporal expansion outperforms the stochastic-only cRBM in terms of generalization error and achieves a more accurate representation of the moments in time. Lastly, we demonstrate that we can identify the original time-scale of assembly dynamics by estimating multiple RTRBMs at different temporal resolutions. Together, we propose that RTRBMs are a valuable tool for capturing the combined stochastic and time-predictive dynamics of large-scale data sets.