Homeostasis, injury and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt

  1. Louis Gall
  2. Carrie Duckworth
  3. Ferran Jardi
  4. Lieve Lammens
  5. Aimee Parker
  6. Ambra Bianco
  7. Holly Kimko
  8. David Mark Pritchard
  9. Carmen Pin  Is a corresponding author
  1. AstraZeneca, United Kingdom
  2. University of Liverpool, United Kingdom
  3. Janssen, Belgium
  4. Quadram Institute, United Kingdom

Abstract

The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43 and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation and migration and leads to loss of barrier integrity. During recovery, our in-silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.

Data availability

The current manuscript is a computational study. No data have been generated for this manuscript. Modelling code is uploaded as Source Code.zip file

Article and author information

Author details

  1. Louis Gall

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Louis Gall, Employee and shareholder of AstraZeneca Plc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1805-2357
  2. Carrie Duckworth

    Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ferran Jardi

    Preclinical Sciences and Translational Safety, Janssen, Beerse, Belgium
    Competing interests
    Ferran Jardi, Employee of Johnson & Johnson..
  4. Lieve Lammens

    Preclinical Sciences and Translational Safety, Janssen, Beerse, Belgium
    Competing interests
    Lieve Lammens, Employee and shareholder of Johnson & Johnson..
  5. Aimee Parker

    Gut Microbes and Health Programme, Quadram Institute, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ambra Bianco

    Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Ambra Bianco, Employee and shareholder of AstraZeneca Plc.
  7. Holly Kimko

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Holly Kimko, Employee and shareholder of AstraZeneca Plc.
  8. David Mark Pritchard

    Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7971-3561
  9. Carmen Pin

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    For correspondence
    carmen.pin@astrazeneca.com
    Competing interests
    Carmen Pin, Employee and shareholder of AstraZeneca Plc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8734-6167

Funding

European Federation of Pharmaceutical Industries and Associations (Innovative Medicines Initiative 2,No. 116030)

  • Louis Gall
  • Carrie Duckworth
  • Ferran Jardi
  • Lieve Lammens
  • David Mark Pritchard
  • Carmen Pin

Horizon 2020 Framework Programme (Innovative Medicines Initiative 2,No. 116030)

  • Louis Gall
  • Carrie Duckworth
  • Ferran Jardi
  • Lieve Lammens
  • David Mark Pritchard
  • Carmen Pin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mariana Gómez-Schiavon, Universidad Nacional Autónoma de México, Mexico

Ethics

Animal experimentation: All experiments were performed in an Association for Assessment and Accreditation of Laboratory Animal Care approved rodent facility and in accordance with the applicable animal welfare guidelines and legislation. Experimental procedures were approved by the institutional ethics committee. Ten-week-old male C57/BL6Y mice were obtained from Charles River (France). Mice were housed in polysulfon cages with corncob bedding under standard conditions of room temperature (21{degree sign}C {plus minus} 2), relative humidity (55% {plus minus} 15) and a 12-h light cycle. Water and a certified rodent pelleted maintenance diet were supplied ad libitum. Nest material and rodent retreats were provided for environmental enrichment.

Version history

  1. Received: December 9, 2022
  2. Preprint posted: December 19, 2022 (view preprint)
  3. Accepted: December 7, 2023
  4. Accepted Manuscript published: December 8, 2023 (version 1)
  5. Version of Record published: January 15, 2024 (version 2)

Copyright

© 2023, Gall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 937
    views
  • 161
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louis Gall
  2. Carrie Duckworth
  3. Ferran Jardi
  4. Lieve Lammens
  5. Aimee Parker
  6. Ambra Bianco
  7. Holly Kimko
  8. David Mark Pritchard
  9. Carmen Pin
(2023)
Homeostasis, injury and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt
eLife 12:e85478.
https://doi.org/10.7554/eLife.85478

Share this article

https://doi.org/10.7554/eLife.85478

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.