SIRT2 inhibition protects against cardiac hypertrophy and ischemic injury

  1. Xiaoyan Yang
  2. Hsiang-Chun Chang
  3. Yuki Tatekoshi
  4. Amir Mahmoodzadeh
  5. Maryam Balibegloo
  6. Zeinab Najafi
  7. Rongxue Wu
  8. Chunlei Chen
  9. Tatsuya Sato
  10. Jason Shapiro
  11. Hossein Ardehali  Is a corresponding author
  1. Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, United States
6 figures, 2 tables and 1 additional file

Figures

Figure 1 with 1 supplement
SIRT2 is upregulated in heart failure (HF).

(A) SIRT1, SIRT2, SIRT3, and SIRT6 in mouse hearts after trans-aortic constriction (TAC). (B) SIRT2 in human hearts from healthy patients and patients with dilated cardiomyopathy. (C) SIRT2 protein …

Figure 1—figure supplement 1
SIRT2 protein in different mouse tissues, including the heart (A), and in various cell lines, including H9c2 cells (B).
Figure 2 with 1 supplement
Sirt2 deficiency protects the heart against cardiac dysfunction after trans-aortic constriction (TAC).

Sirt2-/- and wild-type (WT) littermates were subjected to TAC and ejection fraction (EF) (A), fractional shortening (FS) (B), and interventricular septal thickness during diastole (C) were assessed …

Figure 2—source data 1

Ejection fraction (EF) in wild-type (WT) and Sirt2-/- mice after sham or trans-aortic constriction (TAC) as shown in Figure 2A.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig2-data1-v2.csv
Figure 2—source data 2

Fractional shortening (FS) in wild-type (WT) and Sirt2-/- mice after sham or trans-aortic constriction (TAC) as shown in Figure 2B.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig2-data2-v2.csv
Figure 2—source data 3

Interventricular septal (IVS) thickness diastole in wild-type (WT) and Sirt2-/- mice after sham or trans-aortic constriction (TAC) as shown in Figure 2C.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig2-data3-v2.csv
Figure 2—source data 4

HW/BW in wild-type (WT) and Sirt2-/- mice after sham or trans-aortic constriction (TAC) as shown in Figure 2E.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig2-data4-v2.csv
Figure 2—source data 5

CSA in wild-type (WT) and Sirt2-/- hearts as shown in Figure 2G.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig2-data5-v2.csv
Figure 2—figure supplement 1
Expression of protein (A) and mRNA (B) of other sirtuin family members in the hearts of Sirt2-/- mice.

N=6. Data presented as mean ± SEM.

Hearts from Sirt2-/- mice are protected against ischemia-reperfusion (I/R) injury.

Ejection fraction (EF) and fractional shortening (FS) in wild-type (WT) and Sirt2-/- mice 7 (A) and 21 days (B) after I/R (N=4–5). (C) Time course of FS in Sirt2-/- mice after I/R injury (N=4–5). (D,…

Figure 3—source data 1

Ejection fraction (EF) and fractional shortening (FS) in wild-type (WT) and Sirt2-/- mice after ischemia-reperfusion (I/R) as shown in Figure 3A.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig3-data1-v2.csv
Figure 3—source data 2

Ejection fraction (EF) and fractional shortening (FS) in wild-type (WT) and Sirt2-/- mice after ischemia-reperfusion (I/R) as shown in Figure 3B.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig3-data2-v2.csv
Figure 3—source data 3

Time course of fractional shortening (FS) in wild-type (WT) and Sirt2-/- mice after ischemia-reperfusion (I/R) as shown in Figure 3C.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig3-data3-v2.csv
Figure 3—source data 4

Propidium iodide (PI) positive cells as shown in Figure 3E.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig3-data4-v2.csv
Figure 4 with 2 supplements
cs-Sirt2-/- hearts are protected against trans-aortic constriction (TAC) and ischemia-reperfusion (I/R).

Ejection fraction (EF) and fractional shortening (FS) in Sirt2f/f and cs-Sirt2-/- mice 7 (A) and 14 days (B) after TAC (N=5–9). (C,D) mRNA levels of Anf (C) and Bnp (D) in the hearts of Sirt2f/f and …

Figure 4—source data 1

Ejection fraction (EF) and fractional shortening (FS) in Sirt2f/f and cs-Sirt2-/- mice 7 days after ischemia-reperfusion (I/R) as shown in Figure 4A.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig4-data1-v2.csv
Figure 4—source data 2

Ejection fraction (EF) and fractional shortening (FS) in Sirt2f/f and cs-Sirt2-/- mice 14 days after ischemia-reperfusion (I/R) as shown in Figure 4B.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig4-data2-v2.csv
Figure 4—source data 3

Nppa mRNA in Sirt2f/f and cs-Sirt2-/- hearts as shown in Figure 4C.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig4-data3-v2.csv
Figure 4—source data 4

Nppb mRNA in Sirt2f/f and cs-Sirt2-/- hearts as shown in Figure 4D.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig4-data4-v2.csv
Figure 4—source data 5

Echo parameters in Sirt2f/f and cs-Sirt2-/- hearts as shown in Figure 4E.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig4-data5-v2.xlsx
Figure 4—figure supplement 1
SIRT1, SIRT3, and SIRT2 protein in the hearts of cs-Sirt2-/- mice.
Figure 4—figure supplement 2
cs-Sirt2-/- hearts from female mice are protected against trans-aortic constriction (TAC).

Ejection fraction (EF) and fractional shortening (FS) in female wild-type (WT) and cs-Sirt2-/- mice 7 and 14days after TAC (N=4).

Figure 4—figure supplement 2—source data 1

Ejection fraction (EF) and fractional shortening (FS) in female wild-type (WT) and cs-Sirt2-/- mice 7 and 14 days after TAC as shown in Figure 4—figure supplement 2.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig4-figsupp2-data1-v2.xlsx
Figure 5 with 3 supplements
SIRT2 interacts with nuclear factor (erythroid-derived 2)-like 2 (NRF2) and regulates its activity in the heart.

(A) Co-immunoprecipitation (IP) of SIRT2 and NRF2 in extracts of hearts from wild-type (WT) mice. (B) Endogenous NRF2 acetylation levels in the hearts of WT and Sirt2-/- mice at the baseline. …

Figure 5—figure supplement 1
Effects of SIRT2 overexpression on mRNA levels of non-nuclear factor (erythroid-derived 2)-like 2 (NRF2) targeted antioxidant genes.

N=5–6. Data presented as mean ± SEM.

Figure 5—figure supplement 2
SIRT2 regulates nuclear factor (erythroid-derived 2)-like 2 (NRF2) and its target proteins.

(A) NRF2 protein levels in HL-1 cells treated with Sirt2 siRNA. (B–D) mRNA levels of NRF2 target genes in pentose phosphate pathway (B), quinone and glutathione-based detoxification (C), thioredoxin …

Figure 5—figure supplement 3
Reactive oxygen species (ROS) levels as assessed by dihydroethidium (DHE) staining in neonatal rat cardiomyocytes (NRCMs) treated with control or Sirt2 siRNA after treatment with 500 µM H2O2.

N=5–6. Data presented as mean ± SEM.

Nrf2 deletion and SIRT2 inhibitors protected against cardiac damage and cardiac hypertrophy.

Ejection fraction (EF) (A) and fractional shortening (FS) (B) in wild-type (WT), Sirt2-/-, and Sirt2-/-/Nrf2-/- double knockout (KO) mice 28 days after ischemia-reperfusion (I/R) (N=4–5). (C) …

Figure 6—source data 1

Ejection fraction (EF) in wild-type (WT), Sirt2-/-, and Sirt2-/-/Nrf2-/- mice after ischemia-reperfusion (I/R) as shown in Figure 6A.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data1-v2.csv
Figure 6—source data 2

Fractional shortening (FS) in wild-type (WT), Sirt2-/-, and Sirt2-/-/Nrf2-/- mice after ischemia-reperfusion (I/R) as shown in Figure 6B.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data2-v2.csv
Figure 6—source data 3

Ejection fraction (EF) with AGK2 as shown in Figure 6E.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data3-v2.csv
Figure 6—source data 4

Fractional shortening (FS) with AGK2 as shown in Figure 6F.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data4-v2.csv
Figure 6—source data 5

Left ventricular diameter during diastole (LVDd) with AGK2 as shown in Figure 6G.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data5-v2.csv
Figure 6—source data 6

LVDs with AGK2 as shown in Figure 6H.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data6-v2.csv
Figure 6—source data 7

IVSd with AGK2 as shown in Figure 6I.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data7-v2.csv
Figure 6—source data 8

Posterior wall thickness during diastole (PWTd) with AGK2 as shown in Figure 6J.

https://cdn.elifesciences.org/articles/85571/elife-85571-fig6-data8-v2.csv

Tables

Appendix 1—table 1
Primer sequences.
GenesForward primerReverse primerSpecies
NppaGGGTAGGATTGACAGGATTGGCCTCCTTGGCTGTTATCTTCMouse
18 sAGTCCCTGCCCTTTGTACACACGATCCGAGGGCCTCACTA
ActbCTAAGGCCAACCGTGAAAAGACCAGAGGCATACAGGGACAMouse
NppbATCCGTCAGTCGTTTGGGCAGAGTCAGAAACTGGAGTCMouse
G6pdGGCCAACCGTCTGTTCTACCTCCACTATGATGCGGTTCCAGCRat
PgdCGGGTCATACTGCTCGTGAAAGGTCCTGGCATCTTCTTGTCGRat
Nqo1CACTACGATCCGCCCCCAACGCGTGGGCCAATACAATCAGGRat
GclcGTCAAGGACCGGCACAAGGAGAACATCGCCGCCATTCAGTRat
GclmTGCCACCAGATTTGACTGCATTTTCCTGGAAACTTGCCTCAGAGAGRat
GssGAGGTCCGCAAAGAACCCCAGAGCGTGAATGGGGCATACGRat
GsrTCACCCCGATGTATCACGCTGCCCTGAAGCATCTCATCGCRat
Gpx4AGCAACAGCCACGAGTTCCTATCGATGTCCTTGGCTGCGARat
Gsta1ACTTCGATGGCAGGGGGAGAATGGAACATCAAACTCCCATCATTCCRat
Gsta2TTGACGGGATGAAGCTGGCAGTCAGATCTAAAATGCCTTCGGTGTRat
Gstm1CCAAGTGCCTGGACGCCTTCATAGGTGTTGAGAGGTAGCGGCRat
Gstp1CGTCCACGCAGCTTTGAGTGTAACCACCTCCTCCTTCCAGCRat
Txn1AGTAGACGTGGATGACTGCCAAGCACCAGAGAACTCCCCAACRat
Prdx1TCAGATCCCAAGCGCACCATAGCGGCCAACAGGAAGATCARat
Txnrd1AATGCTGGAGAGGTGACGCAGATGTCTCCCCCAGAACGCTRat
Sirt1CAGTGTCATGGTTCCTTTGCCACCGAGGAACTACCTGATMouse
Sirt3GCTGCTTCTGCGGCTCTATACGAAGGACCTTCGACAGACCGTMouse
Sirt4GTGGAAGAATAAGAATGAGCGGAGGCACAAATAACCCCGAGGMouse
Sirt5CCACCGACAGATTCAGGTTTTTCCCGTTAGTGCCCTGCTTTAMouse
Sirt6ATGTCGGTGAATTATGCAGCAGCTGGAGGACTGCCACATTAMouse
Sirt7CAGGTGTCACGCATCCTGAGGCCCGTGTAGACAACCAAGTMouse
CatCCAGCCAGCGACCAGATGAACCTATTGGGTTCCCGCCTCCRat
Sod1AACTGAAGGCGAGCATGGGTTATGCCTCTCTTCATCCGCTGGRat
Sod2GGGGCCATATCAATCACAGCAGAACCTTGGACTCCCACAGACRat
Sod3ACGTTCTTGGGAGAGCTTGTCTGCTAAGTCGACACCGGACRat
ActbGGCTCCTAGCACCATGAAGACAGTGAGGCCAGGATAGAGCRat
Hprt 1CCCTCAGTCCCAGCGTCGTGCGAGCAAGTCTTTCAGTCCTGTCCRat
B2mCCGTGATCTTTCTGGTGCTTGGAGACACGTAGCAGTTGAGGARat
G6pdGTCTTTGCTCGGTGCTTGTCAGCATAGAGGGCCTTACGGAMouse
Nqo1TCTCTGGCCGATTCAGAGTGCCAGACGGTTTCCAGACGTTMouse
GclmATGACCCGAAAGAACTGCTCTGGGTGTGAGCTGGAGTTAAGMouse
GclcACTGAATGGAGGCGATGTTCTTCAGAGGGTCGGATGGTTGGMouse
GssGCACCGACACGTTCTCAATGTAGCACCACCGCATTAGCTGMouse
GsrATGTTGACTGCCTGCTCTGGATCCGTCTGAATGCCCACTTMouse
Gpx4GTACTGCAACAGCTCCGAGTATGCACACGAAACCCCTGTAMouse
Gsta2CCAGGACTCTCACTAGACCGTCCCGGGCATTGAAGTAGTGAMouse
gstm1ATACACCATGGGTGACGCTCTCCATCCAGGTGGTGCTTTCMouse
Gstp1GTCTACGCAGCACTGAATCCGGGAGCTGCCCATACAGACAMouse
Txn1GCGCTCCGCCCTATTTCTATCCTCCTGAAAAGCTTCCTTGCMouse
Prdx1ACTGACAAACATGGTGAAGTGTGTACAAGAGTTTCTTCTGGCTGCMouse
Txnrd1GAATGGACAGTCCCATCCCGAAGCCCACGACACGTTCATCMouse
ActbTAAAACCCGGCGGCGCAGTCATCCATGGCGAACTGGTMouse
Hprt1AGAGCGTTGGGCTTACCTCATGGTTCATCATCGCTAATCACGMouse
B2mACGCCTGCAGAGTTAAGCATTGATCACATGTCTCGATCCCAGMouse
Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus, male, C57BL/6)Sirt2 knockout miceDr. Gius Labrefer to: SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity.
Strain, strain background (Mus musculus, male, C57BL/6)Sirt2 flox/flox minceDr. Gius Labrefer to: SIRT2 deletion enhances KRAS-induced tumorigenesis in vivo by regulating K147 acetylation status
Strain, strain background (Mus musculus, male, C57BL/6)Nrf2 knockout micethe Jackson LaboratoryRRID:IMSR_JAX:017009
Strain, strain background (Rattus norvegicus domestica, female)Sprague–Dawley ratCharles River
AntibodyRabbit polyclonal SIRT1 antibodySigma07–131WB (1:1000)
AntibodyRabbit polyclonal SIRT2 antibodySigmaS8447WB (1:1000)
AntibodyRabbit mAb SIRT3 antibodyCell Signaling TechnologyRabbit mAb #5490WB (1:1000)
AntibodyRabbit polyclonal anti-HPRT antibodyProteintech150-59-1-APWB (1:5000)
AntibodyMouse monoclonal anti-GAPDH antibodyProteintech60004–1-IgWB (1:10000)
AntibodyRabbit mAb NRF2 antibodyCell Signaling TechnologyRabbit mAb #20733WB (1:1000)
AntibodyRabbit polycloncal NRF2 antibodyAbcamab31163WB (1:1000)
AntibodyHRP-conjugated donkey polyclonal anti-mouse IgG antibodyJackson
ImmunoResearch
715-035-150WB (1:5000)
AntibodyHRP-conjugated donkey polyclonal anti-rabbit IgG antibodyJackson
ImmunoResearch
711-035-152WB (1:5000)
AntibodyRabbit Anti beta Actin antibodyAbcamab8227WB (1:2000)
AntibodyRabbTBP antibodyAbcamab63766WB (1:2000)
AntibodyRabbit mAb SIRT6 antibodyCell Signaling TechnologyRabbit mAb #12486WB (1:1000)
AntibodyMouse Flag-M2 monoclonal antibodySigmaF1804WB: (1:2000); IP(1:xxx)
AntibodyAcetyl Lysine Antibody, AgaroseimmunechemICP0388-2MGIP: 1:10
Chemical compound, drugPropodium IodineSigmaP4170-10MG
Chemical compound, drugHoechst 34432Life Technology62249
Chemical compound, drugCycloheximideSigma1810
Chemical compound, drugParaformaldehydeThermo Fisher ScientificAC416780250
Chemical compound, drugRIPA BufferThermo Fisher Scientific89901
Chemical compound, drugProteaseArrest Protease InhibitorG-Biosciences786–437
Chemical compound, drug10% formalinFisher ScientificFLSF1004
Chemical compound, drugBrdUSigma19–160
Chemical compound, drugvitamin B12SigmaV2876
Chemical compound, drugFBSBio-TechneS11550
Chemical compound, drugpenicillin–streptomycinCytivaSV30010
Chemical compound, drugLipofectamine 2000 Transfection ReagentInvitrogen, Thermo Fisher Scientific11668027
Chemical compound, drugDharmafect transfection reagentHorizon2001–03
Chemical compound, drugAGK2SelleckchemS7577
Chemical compound, drughydrogen peroxideFisher ScientificH324-500
Chemical compound, drugNormal Rabbit IgGSigma12–370
Chemical compound, drugDMSOSigmaD4540
Cell lineH9c2ATCCCRL-1446
OtherDMEMCorning10-013CV
Commercial assay or kitRNA-STAT60TeltestCs-502
Commercial assay or kitDNAse IAmbionAM2222
Commercial assay or kitPerfeCTa SYBR Green FastMixQuanta95074–05 K
Commercial assay or kitqScript cDNA Synthesis KitQuanta95047–500
Commercial assay or kitSuperSignal West Pico PLUS Chemiluminescent SubstratePierce34579
Commercial assay or kitBCA Protein Assay KitPierce23225
Commercial assay or kitNE-PER Nuclear and Cytoplasmic Extraction ReagentsPiercePI78835
Commercial assay or kitTrichrome Stain (Masson) KitSigmaHT15-1KT
Commercial assay or kitProtein A AgaroseRoche11719408001
Commercial assay or kitdihydroethidium (DHE) assayThermo Fisher ScientificD11347
Sequence-based reagentRat Sirt2 siRNAHorizon DiscoveryM-082072-01-0005siGENOME Rat Sirt2 (361532) siRNA
Recombinant DNA reagentWildtype SIRT2 plasmidDr. Gius Labrefer to: SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity
Software, algorithmGraphPad PrismGraphPadVersion 9
Software, algorithmImageJNIH1.53 c

Additional files

Download links