Medullary tachykinin precursor 1 neurons promote rhythmic breathing

  1. Jean-Philippe Rousseau
  2. Andreea Furdui
  3. Carolina da Silveira Scarpellini
  4. Richard L Horner
  5. Gaspard Montandon  Is a corresponding author
  1. Unity Health Toronto, Canada
  2. Unity health Toronto, Canada
  3. University of Toronto, Canada

Abstract

Rhythmic breathing is generated by neural circuits located in the brainstem. At its core is the preBötzinger Complex (preBötC), a region of the medulla, necessary for the generation of rhythmic breathing in mammals. The preBötC is comprised of various neuronal populations expressing neurokinin-1 receptors, the cognate G-protein-coupled receptor of the neuropeptide substance P (encoded by the tachykinin precursor 1 or Tac1). Neurokinin-1 receptors are highly expressed in the preBötC and destruction or deletion of neurokinin-1 receptor-expressing preBötC neurons severely impairs rhythmic breathing. Although application of substance P to the preBötC stimulates breathing in rodents, substance P is also involved in nociception and locomotion in various brain regions, suggesting that Tac1 neurons found in the preBötC may have diverse functional roles. Here, we characterized the role of Tac1-expressing preBötC neurons in the generation of rhythmic breathing in vivo, as well as motor behaviors. Using a cre‑lox recombination approach, we injected adeno-associated virus containing the excitatory channelrhodopsin-2 ChETA in the preBötC region of Tac1-cre mice. Employing a combination of histological, optogenetics, respiratory, and behavioral assays, we showed that stimulation of glutamatergic or Tac1 preBötC neurons promoted rhythmic breathing in both anesthetized and freely moving animals, but also triggered locomotion and overcame respiratory depression by opioid drugs. Overall, our study identified a population of excitatory preBötC with major roles in rhythmic breathing and behaviors.

Data availability

All data generated are included in the manuscript and supporting files.Source data files are provided for all Figures.

Article and author information

Author details

  1. Jean-Philippe Rousseau

    Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Andreea Furdui

    Keenan Research Centre for Biomedical Sciences, Unity health Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Carolina da Silveira Scarpellini

    Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5576-3468
  4. Richard L Horner

    Department of Medicine, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Gaspard Montandon

    Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Canada
    For correspondence
    gaspard.montandon@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3587-4472

Funding

CIHR

  • Jean-Philippe Rousseau

CIHR Project Grant

  • Gaspard Montandon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were carried out in accordance with the recommendations of the Canadian Council on Animal Care and were approved by St. Michael's Hospital animal care committee (animal use protocols #981 and #988).

Reviewing Editor

  1. Jeffrey C Smith, National Institute of Neurological Disorders and Stroke, United States

Version history

  1. Received: December 14, 2022
  2. Preprint posted: January 13, 2023 (view preprint)
  3. Accepted: July 15, 2023
  4. Accepted Manuscript published: July 17, 2023 (version 1)
  5. Version of Record published: August 3, 2023 (version 2)

Copyright

© 2023, Rousseau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 342
    Page views
  • 96
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-Philippe Rousseau
  2. Andreea Furdui
  3. Carolina da Silveira Scarpellini
  4. Richard L Horner
  5. Gaspard Montandon
(2023)
Medullary tachykinin precursor 1 neurons promote rhythmic breathing
eLife 12:e85575.
https://doi.org/10.7554/eLife.85575

Further reading

    1. Neuroscience
    Stijn A Nuiten, Jan Willem de Gee ... Simon van Gaal
    Research Article

    Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.

    1. Neuroscience
    Manfred G Kitzbichler, Daniel Martins ... Neil A Harrison
    Research Article Updated

    The relationship between obesity and human brain structure is incompletely understood. Using diffusion-weighted MRI from ∼30,000 UK Biobank participants, we test the hypothesis that obesity (waist-to-hip ratio, WHR) is associated with regional differences in two micro-structural MRI metrics: isotropic volume fraction (ISOVF), an index of free water, and intra-cellular volume fraction (ICVF), an index of neurite density. We observed significant associations with obesity in two coupled but distinct brain systems: a prefrontal/temporal/striatal system associated with ISOVF and a medial temporal/occipital/striatal system associated with ICVF. The ISOVF~WHR system colocated with expression of genes enriched for innate immune functions, decreased glial density, and high mu opioid (MOR) and other neurotransmitter receptor density. Conversely, the ICVF~WHR system co-located with expression of genes enriched for G-protein coupled receptors and decreased density of MOR and other receptors. To test whether these distinct brain phenotypes might differ in terms of their underlying shared genetics or relationship to maps of the inflammatory marker C-reactive Protein (CRP), we estimated the genetic correlations between WHR and ISOVF (rg = 0.026, P = 0.36) and ICVF (rg = 0.112, P < 9×10−4) as well as comparing correlations between WHR maps and equivalent CRP maps for ISOVF and ICVF (P<0.05). These correlational results are consistent with a two-way mechanistic model whereby genetically determined differences in neurite density in the medial temporal system may contribute to obesity, whereas water content in the prefrontal system could reflect a consequence of obesity mediated by innate immune system activation.