Sex-dependent noradrenergic modulation of premotor cortex during decision making

  1. Ellen M Rodberg
  2. Carolina R den Hartog
  3. Emma S Dauster
  4. Elena M Vazey  Is a corresponding author
  1. University of Massachusetts Amherst, United States

Abstract

Rodent premotor cortex (M2) integrates information from sensory and cognitive networks for action planning during goal-directed decision making. M2 function is regulated by cortical inputs and ascending neuromodulators, including norepinephrine (NE) released from the locus coeruleus (LC). LC-NE has been shown to modulate the signal to noise ratio of neural representations in target cortical regions, increasing the salience of relevant stimuli. Using rats performing a two-alternative forced choice task after administration of a β noradrenergic antagonist (propranolol), we show that β noradrenergic signaling is necessary for effective action plan signals in anterior M2. Loss of β noradrenergic signaling results in failure to suppress irrelevant action plans in anterior M2 disrupting decoding of cue related information, delaying decision times, and increasing trial omissions, particularly in females. Furthermore, we identify a potential mechanism for the sex bias in behavioral and neural changes after propranolol administration via differential expression of β2 noradrenergic receptor RNA across sexes in anterior M2, particularly on local inhibitory neurons. Overall, we show a critical role for β noradrenergic signaling in anterior M2 during decision making by suppressing irrelevant information to enable efficient action planning and decision making.

Data availability

Data analyzed during this study are included in the supporting file.

Article and author information

Author details

  1. Ellen M Rodberg

    University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4857-3970
  2. Carolina R den Hartog

    University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emma S Dauster

    University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elena M Vazey

    University of Massachusetts Amherst, Amherst, United States
    For correspondence
    evazey@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3311-9414

Funding

National Institute of Mental Health (R00MH104716)

  • Elena M Vazey

National Institute of Mental Health (F31MH131348)

  • Ellen M Rodberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alicia Izquierdo, University of California, Los Angeles, United States

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committee at the University of Massachusetts Amherst (#2018-0080) in accordance with the guidelines described in the US National Institutes of Health Guide for the Care and Use of Laboratory Animals (National Research Council 2011). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Preprint posted: December 6, 2022 (view preprint)
  2. Received: December 14, 2022
  3. Accepted: August 21, 2023
  4. Accepted Manuscript published: August 22, 2023 (version 1)
  5. Version of Record published: August 31, 2023 (version 2)

Copyright

© 2023, Rodberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 451
    views
  • 58
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ellen M Rodberg
  2. Carolina R den Hartog
  3. Emma S Dauster
  4. Elena M Vazey
(2023)
Sex-dependent noradrenergic modulation of premotor cortex during decision making
eLife 12:e85590.
https://doi.org/10.7554/eLife.85590

Share this article

https://doi.org/10.7554/eLife.85590

Further reading

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.