Sex-dependent noradrenergic modulation of premotor cortex during decision making

  1. Ellen M Rodberg
  2. Carolina R den Hartog
  3. Emma S Dauster
  4. Elena M Vazey  Is a corresponding author
  1. University of Massachusetts Amherst, United States

Abstract

Rodent premotor cortex (M2) integrates information from sensory and cognitive networks for action planning during goal-directed decision making. M2 function is regulated by cortical inputs and ascending neuromodulators, including norepinephrine (NE) released from the locus coeruleus (LC). LC-NE has been shown to modulate the signal to noise ratio of neural representations in target cortical regions, increasing the salience of relevant stimuli. Using rats performing a two-alternative forced choice task after administration of a β noradrenergic antagonist (propranolol), we show that β noradrenergic signaling is necessary for effective action plan signals in anterior M2. Loss of β noradrenergic signaling results in failure to suppress irrelevant action plans in anterior M2 disrupting decoding of cue related information, delaying decision times, and increasing trial omissions, particularly in females. Furthermore, we identify a potential mechanism for the sex bias in behavioral and neural changes after propranolol administration via differential expression of β2 noradrenergic receptor RNA across sexes in anterior M2, particularly on local inhibitory neurons. Overall, we show a critical role for β noradrenergic signaling in anterior M2 during decision making by suppressing irrelevant information to enable efficient action planning and decision making.

Data availability

Data analyzed during this study are included in the supporting file.

Article and author information

Author details

  1. Ellen M Rodberg

    University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4857-3970
  2. Carolina R den Hartog

    University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emma S Dauster

    University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elena M Vazey

    University of Massachusetts Amherst, Amherst, United States
    For correspondence
    evazey@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3311-9414

Funding

National Institute of Mental Health (R00MH104716)

  • Elena M Vazey

National Institute of Mental Health (F31MH131348)

  • Ellen M Rodberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alicia Izquierdo, University of California, Los Angeles, United States

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committee at the University of Massachusetts Amherst (#2018-0080) in accordance with the guidelines described in the US National Institutes of Health Guide for the Care and Use of Laboratory Animals (National Research Council 2011). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Preprint posted: December 6, 2022 (view preprint)
  2. Received: December 14, 2022
  3. Accepted: August 21, 2023
  4. Accepted Manuscript published: August 22, 2023 (version 1)
  5. Version of Record published: August 31, 2023 (version 2)

Copyright

© 2023, Rodberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 473
    views
  • 61
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ellen M Rodberg
  2. Carolina R den Hartog
  3. Emma S Dauster
  4. Elena M Vazey
(2023)
Sex-dependent noradrenergic modulation of premotor cortex during decision making
eLife 12:e85590.
https://doi.org/10.7554/eLife.85590

Share this article

https://doi.org/10.7554/eLife.85590

Further reading

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.