An umbrella review of systematic reviews on the impact of the COVID-19 pandemic on cancer prevention and management, and patient needs

  1. Taulant Muka
  2. Joshua JX Li
  3. Sahar J Farahani
  4. John PA Ioannidis  Is a corresponding author
  1. Institute of Social and Preventive Medicine, University of Bern, Switzerland
  2. Meta-Research Innovation Center at Stanford (METRICS), Stanford University, United States
  3. Epistudia, Switzerland
  4. Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
  5. Department of Pathology and Laboratory Medicine, Stony Brook University, Long Island, United States
  6. Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, United States
  7. Department of Epidemiology and Population Health, Stanford University School of Medicine, United States
2 figures, 4 tables and 3 additional files

Figures

Flowchart of identification, screening, eligibility, inclusion, and exclusion of retrieved studies*.

*In the search, we did not include any language restriction filter. However, during full-text screening we included only studies that were in English. **WHO COVID-19 database does not allow to specify the search by both date and month, and the search for this specific database is up to end-December 2022. Any full text (n = 0) that was eligible and published after November 29, 2022, was excluded.

Visual summary.

CI, confidence interval.

Tables

Table 1
Characteristics of included systematic reviews.
Author, year of publicationMeta-analysisNumber of included studiesCountries*Pre-pandemic controlsCancer typesAspects assessedLast search
Adham et al., 2022No5GloballyNoH&NMT, O15-Jul-20
Alkatout et al., 2021No16Multiple countries, including
US, TW, BE, NL, JP, IT, UK, AS, CA
YesALLDCS, RD28-Dec-20
Alom et al., 2021No72Multiple countriesNoAllMT, TL, O1-Sep-20
Ayubi et al., 2021Yes34Multiple countriesNoAllPSND, O3-Jan-21
Azab and Azzam, 2021No51Multiple countriesNoGliomaMTEnd of 2020
Bezerra et al., 2022No8NPNoALLTL01-Apr-2021
Crosby and Sharma, 2020No45NPNo/NSH&NMT08-Apr-2020
de Bock et al., 2022Yes24Multiple countriesYesALL, BCDelayed and/or canceled treatment
Other aspects
21-Mar-2021
Dhada et al., 2021No19Multiple countries, including IT, US, UK, NLNoALLDCT, DCS, PSND, TL, FBD, SIA1-Dec-20
Di Cosimo et al., 2022Yes56Multiple countriesYesALLMT, DCT, TL, O11-Dec-20
Donkor et al., 2021No11Multiple countries, including CN, IR, BR, ZANoALLO3-Aug-20
Fancellu et al., 2022No7ITYesCRCDCS, RD31-Jan-22
Ferrara et al., 2022No33Multiple countriesYesCVDCT, DCS, RD, RHPV8-Feb-22
Gadsden et al., 2022No17Multiple countries, including IN, SL, BAYesALLDCT, O15-Dec-21
Garg et al., 2020No212Multiple countriesNoALLMT2-May-20
Gascon et al., 2022No23Multiple countriesNoH&NMT, O1-May-20
Hesary and Salehiniya, 2022No22Multiple countries, including
IT, UK, PG, NL, CN, IN, JP, TU, IR, SN
YesGAMT, DCS, RD, PSND31-Dec-21
Hojaij et al., 2020No35Multiple countriesNoH&N, OTOMT, TL, O31-Dec-20
Jammu et al., 2021No19Multiple countriesNoALLDCT, PSND, FBD27-Aug-20
Kirby et al., 2022No56Multiple countriesNoALLPSND, FBD, SIA31-Mar-21
Legge et al., 2022No18Multiple countriesNoALLPSND, FBD, SIA25-May-22
Lignou et al., 2022No32Multiple countriesYesPCDCT, RD, TL1-Aug-21
Lu et al., 2021No41NPNoALLTL1-May-20
Majeed et al., 2022No60Multiple countriesYes, but NSPCDCT, RD, TL3-Nov-21
Mayo et al., 2021Yes13Multiple countries, including
IT, AU, TW, US, FR, NL
YesALLDCT, DCS10-Feb-21
Mazidimoradi et al., 2021No43Multiple countriesYesCRCMT, DCT, RD1-Jun-21
Mazidimoradi et al., 2022No25Multiple countriesYesCRCDCS1-Jun-21
Momenimovahed et al., 2021No55Multiple countriesNoALLPSND30-Jun-21
Mostafaei et al., 2022No22Multiple countriesNoALLTL1-Jun-21
Moujaess et al., 2020No88Multiple countriesNoALLDCT, O15-Apr-20
Muls et al., 2022No51Multiple countriesNoALLPSND1-Oct-21
Murphy et al., 2022No37Multiple countriesNoALLTL31-Mar-21
Ng and Hamilton, 2022Yes31Multiple countriesYesBCDCS, RD1-Oct-20
Nikolopoulos et al., 2022No15Multiple countriesYes, but NSGCMT, DCT, RD, PSND10-Feb-21
Pacheco et al., 2021No9Multiple countries, including
US, IT, CN, SP, UK, IR
NoALLDCT, ONP
Pararas et al., 2022Yes10Multiple countriesYesCRCONP
Pascual et al., 2022No12Multiple countries from low- and middle-income countriesYes, but NSSurgical Neuro-OncologyMD, RD, TL, O01-Sep- 2021
Piras et al., 2022No281Multiple countriesNoALLMT, DCT, SIA, PSND31-Dec-2021
Riera et al., 2021No62Multiple countriesYesALLDCTNP
Rohilla et al., 2021No6INNoALLPSND, O3-Feb-21
Salehi et al., 2022No16Multiple countriesNoALLTL1-Apr-21
Sarich et al., 2022Yes44Multiple countriesYesNARF5-Nov-20
Sasidharanpillai and Ravishankar, 2022Yes7Multiple countries, including
SL, IT, CA, SC, BE, US
YesCVDCT, RD1-Sep-21
Sun et al., 2021No6IT, AM, UKNoBCMT1-Feb-21
Tang et al., 2022Yes14TU, CN, UK, IT, DN, AS, AUYesCRCO12-Jan-22
Teglia et al., 2022aYes39Multiple countriesYesBC, CRC, CVDCT, RD12-Dec-21
Teglia et al., 2022bYes47Multiple countriesYesALLDCT12-Dec-21
Thomson et al., 2020Yes54NPYesALLO1-Jun-21
Vigliar et al., 2020Yes41Multiple countriesYesALLDCS, RD30-Apr-20
Zapała et al., 2022No160NPNoALLDCT, PSND, TLNP
Zhang et al., 2022Yes40Multiple countriesNoALLPSND31-Jan-22
  1. *

    Multiple countries refer to inclusion of studies for final analysis that used data from more than one country. If complete information on location from all primary studies were provided, then specific countries were listed.

  2. Apps.

  3. Respondents.

  4. AM, America; BC; AS, Austria; AU, Australia; BA, Bangladesh; BC, breast cancer; BE, Belgium; BR, Brazil; CA, Canada; China; CRC, colorectal cancer; CV, cervical cancer; DN, Denmark; FR, France; GA, gastric cancer; GC, gynecological cancer; H&N, head and neck cancer; IN, India; IR, Iran; IT, Italy; JP, Japan; NA, not applicable; NL, Netherlands; NP, not provided; OTO, otorhinolaryngology cancer; PC, pediatric cancer; PG, Portugal; SC, Scotland; SL, Slovenia or Sri Lanka; SN, Singapore; SP, Spain; TU, Turkey; TW, Taiwan; UK, United Kingdom; United States; ZA, Zambia;MT, modification of treatment; DCT, delayed and/or canceled treatment; DCS, delayed and canceled screening; RD, reduced diagnosis: RHPV, reduced uptake of HPV vaccination; TL, telemedicine; PSND, psychological needs/distress; FBD, financial burden/distress; SIA, social isolation; O, other aspects.

Table 2
Methodological rigor of included reviews.
AuthorChecklist useMethodological rigor conclusion categoryGRADE
Adham et al., 2022CEBMNot providedNot provided
Alkatout et al., 2021NOSStrong evidenceNot provided
Alom et al., 2021NHLBI, NIHNot providedNot provided
Ayubi et al., 2021Not appliedNot providedNot provided
Azab and Azzam, 2021Not appliedNot providedNot provided
Bezerra et al., 2022Not appliedNot providedNot provided
Di Cosimo et al., 2022CLARITYMixed/IntermediateNot provided
Crosby and Sharma, 2020Not appliedNot providedNot provided
de Bock et al., 2022ROBINS-IStrong evidenceNot provided
Dhada et al., 2021CASP, NHLBI, NIHMixed/IntermediateNot provided
Donkor et al., 2021JBIWeakNot provided
Fancellu et al., 2022Not appliedNot providedNot provided
Ferrara et al., 2022NOSStrong evidenceNot provided
Gadsden et al., 2022JBI, ROBINS-IMixed/IntermediateNot provided
Garg et al., 2020Not appliedNot providedNot provided
Gascon et al., 2022Agree IIMixed/IntermediateNot provided
Hesary and Salehiniya, 2022NOSMixed/IntermediateNot provided
Hojaij et al., 2020Not appliedNot providedNot provided
Jammu et al., 2021Not appliedNot providedNot provided
Kirby et al., 2022JBI, CHECMixed/IntermediateNot provided
Legge et al., 2022MMATStrong evidenceNot provided
Lignou et al., 2022Not appliedNot providedNot provided
Lu et al., 2021MARSMixed/IntermediateNot provided
Majeed et al., 2022Not appliedNot providedLow to moderate certainty
Mayo et al., 2021NOSMixed/IntermediateModerate to high
Mazidimoradi et al., 2021NOSMixed/IntermediateNot provided
Mazidimoradi et al., 2022NOSStrong evidenceNot provided
Momenimovahed et al., 2021Not appliedNot providedNot provided
Mostafaei et al., 2022JBIMixed/IntermediateNot provided
Moujaess et al., 2020Not appliedNot providedNot provided
Muls et al., 2022MMATMixed/IntermediateNot provided
Murphy et al., 2022JBI, CHECMixed/IntermediateNot provided
Ng and Hamilton, 2022NOSMixed/IntermediateNot provided
Nikolopoulos et al., 2022NOSMixed/IntermediateNot provided
Pacheco et al., 2021JBI, ROBINS-IWeakNot provided
Pararas et al., 2022NOSStrong evidenceNot provided
Pascual et al., 2022Not appliedNot providedNot provided
Piras et al., 2022Not appliedNot providedNot provided
Riera et al., 2021ROBINS-IMixed/IntermediateNot provided
Rohilla et al., 2021Not appliedNot providedNot provided
Salehi et al., 2022Not appliedNot providedNot provided
Sarich et al., 2022ROBINS-IWeak evidenceNot provided
Sasidharanpillai and Ravishankar, 2022NHLBI, NIHStrong evidenceNot provided
Sun et al., 2021Not appliedNot providedNot provided
Tang et al., 2022NOSStrong evidenceNot provided
Teglia et al., 2022aCASPMixed/IntermediateNot provided
Teglia et al., 2022bCASPMixed/IntermediateNot provided
Thomson et al., 2020ASTROMixed/IntermediateNot provided
Vigliar et al., 2020Not applicableNot providedNot provided
Zapała et al., 2022Not appliedNot providedNot provided
Zhang et al., 2022JBIMixed/IntermediateNot provided
  1. CEBM, Critical appraisal tool of qualitative studies from Centre of Evidence-based Medicine (CEBM), University of Oxford; ASTRO, The American Society of Radiation Oncology; CASP, https://casp-uk.net/casp-tools-checklists/; CHEC, Consensus on Health Economic Criteria: CLARITY, ‘Risk of bias instrument for cross-sectional surveys of attitudes and practices’ from the CLARITY Group at McMaster University; JBI, Joanna Briggs Institute; MARS, Mobile Apps Rating Scale; MMAT, Mixed Methods Appraisal Tool; NHLBI, NHI, National Institute of Health Checklist; NOS, Newcastle-Ottawa Quality Assessment: RBC, Risk of Bias Checklist for Prevalence Studies by Hoy et al., 2012.

Table 3
Methodological assessment of the included reviews – AMSTAR-2 evaluation (16 questions)*.
Authors, year of publicationQ1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12Q13Q14Q15Q16Overall assessment
Adham et al., 2022nnnpynnnnynnananannanCritical low
Alkatout et al., 2021npyypynnnpyynnanannnayCritical low
Alom et al., 2021nnnpynynpyynnanaynnayCritical low
Ayubi et al., 2021ynnpynnnynnynnnyyCritical low
Azab and Azzam, 2021nnnpyyynypynynnnyyCritical low
Bezerra et al., 2022ynnnnnnynnnanannnayCritical low
Crosby and Sharma, 2020nnnnnnnnnnnananannayCritical low
de Bock et al., 2022ynypyyynyynynnynyCritical low
Dhada et al., 2021npynpynnnyynnanannnayCritical low
Di Cosimo et al., 2022nnnpyynnyynyyyyyyCritical low
Donkor et al., 2021nnnpyyynyynnananannayCritical low
Fancellu et al., 2022ynnnnnnnnnnanannnnCritical low
Ferrara et al., 2022npynpyyynnynnanaynnayLow
Gadsden et al., 2022ypynpyynnyynnanaynnayLow
Garg et al., 2020nnnpyyynnnnnananynayCritical low
Gascon et al., 2022yynyyynnayynananannayLow
Hesary and Salehiniya, 2022npynpynnnnynnanannnayCritical low
Hojaij et al., 2020nnnnnnnnnnnananannayCritical low
Jammu et al., 2021nnnpyyynnnnnanannnayCritical low
Kirby et al., 2022ypynynynpyynnanannnayCritical low
Legge et al., 2022ypyypyyynyynnanannnayCritical low
Lignou et al., 2022ynnnyynynnnanannnayCritical low
Lu et al., 2021ynnapynnnynannananannayCritical low
Majeed et al., 2022nynpynynnpynnanannnayCritical low
Mayo et al., 2021nynpyyynnpynnyynnyCritical low
Mazidimoradi et al., 2022npynpynnnpyynnanannnayCritical low
Mazidimoradi et al., 2021npynpynnnyynnanannnayCritical low
Momenimovahed et al., 2021nnnpynnnnnnnanannnayCritical low
Mostafaei et al., 2022npynnnnypyynnanannnayCritical low
Muls et al., 2022ypyypynynyynnanannnayCritical low
Murphy et al., 2022nnnynnnyynnanannnayCritical low
Ng and Hamilton, 2022npynpynnnpyynynyyyyLow
Nikolopoulos et al., 2022npynpynnnnynnanannnayCritical low
Pacheco et al., 2021yyypyyyypyyynanaynnayHigh quality
Pararas et al., 2022nynyynnnynnnnyyyCritical low
Pascual et al., 2022ynypyyynynnnananynanCritical low
Piras et al., 2022nnnpynnnpynnnanannnayCritical low
Riera et al., 2021npyypyyyyyyynananynayModerate quality
Rohilla et al., 2021nnnpynynnnnnanannnayCritical low
Salehi et al., 2022nnnpyynnnnnnanannnayCritical low
Sarich et al., 2022yyypyyynyynyynynyCritical low
Sasidharanpillai and Ravishankar, 2022npynpynnnyynyyyyyyLow
Sun et al., 2021nnnpynnnnnnnananannanCritical low
Tang et al., 2022ynnnnnnnypynnnynyCritical low
Teglia et al., 2022aypyypyyynnynnnnnyyCritical low
Teglia et al., 2022bypyypyyynpyynnnnynyCritical low
Thomson et al., 2020nnnnnnnnynynnnnayCritical low
Vigliar et al., 2020nanananananananananananananananaNA
Zapała et al., 2022nnnnnnnnnnnanannnayCritical low
Zhang et al., 2022yyypynynpyynyyyyyyLow
  1. AMSTAR-2 overall assessment rating: high—the review provides an accurate and comprehensive summary of the results of the available studies that addresses the question of interest; moderate—the review has more than one weakness, but no critical flaws. It may provide an accurate summary of the results of the available studies; low—the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest; or critically low—the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies.

  2. Q1: Did the research questions and inclusion criteria for the review include the components of PICO?

  3. Q2: Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?

  4. Q3: Did the review authors explain their selection of the study designs for inclusion in the review?

  5. Q4: Did the review authors use a comprehensive literature search strategy?

  6. Q5: Did the review authors perform study selection in duplicate?

  7. Q6: Did the review authors perform data extraction in duplicate?

  8. Q7: Did the review authors provide a list of excluded studies and justify the exclusions?

  9. Q8: Did the review authors describe the included studies in adequate detail?

  10. Q9: Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?

  11. Q10: Did the review authors report on the sources of funding for the studies included in the review?

  12. Q11: If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?

  13. Q12: If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis?

  14. Q13: Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?

  15. Q14: Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?

  16. Q15: If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?

  17. Q16: Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?

  18. *

    The review scored yes if study used a checklist to evaluate methodological rigor, and partial yes if only GRADE assessment was provided without applying a checklist for assessing methodological rigor.

  19. Individual participant meta-analysis and thus not applicable the AMSTAR evaluation.

  20. n, no; na, not applicable; py, partially yes; y, yes.

Table 4
Summary estimates of the meta-analysis included.
AuthorNo. of studiesOutcomeEstimateLCIUCII2p-heterogenietyMetric
Ayubi et al., 202115Depression0.370.270.4799<0.001Prev
17Anxiety0.380.310.4699<0.001Prev
4Anxiety0.250.080.42680.02SMD
Zhang et al., 202228Depression0.3250.2630.39299<0.001Prev
34Anxiety0.3130.2540.37599<0.001Prev
8PTSD0.2880.2070.36899<0.001Prev
5Distress0.5390.4690.609670.016Prev
5Insomia0.2320.1710.29391<0.001Prev
3Fear of cancer progression0.6740.4370.9193<0.001Prev
Di Cosimo et al., 202228Cancellation/delay of treatment0.580.480.6798<0.01Prop*
14Modification of treatment0.650.530.7598<0.01Prop*
10Delay of clinic visits0.750.490.9599<0.01Prop*
14Reduction in activity0.580.470.6893<0.01Prop*
25Use of remote consultation0.720.590.8499<0.01Prop*
7Routine use of PPE (patients)0.810.750.9596<0.01Prop*
16Routine use of PPE (workers)0.80.610.9499<0.01Prop*
18Routine screening SARA-CoV-2 swab0.410.30.5396<0.01Prop*
de Bock et al., 20225≥T2 stage during the COVID-19 pandemic compared to the pre-pandemic control group1.000.721.38580.05OR
4≥T3 stage during the COVID-19 pandemic compared to the pre-pandemic control group0.950.691.32390.18OR
5≥N1 stage during the COVID-19 pandemic compared to the pre-pandemic control group1.550.872.7430.39OR
Mayo et al., 20216Screening breast cancer0.630.530.77100<0.001IRR
5Screening conlonc cancer0.110.050.24100<0.001IRR
3Screening cervical cancer0.10.040.24100<0.001IRR
Ng and Hamilton, 20223Screening breast cancer registry-based study0.590.460.7100<0.001RR
10Screening breast cancer non-registry-based study0.470.380.58100<0.001RR
4Diagnosis breast cancer registry-based study0.820.631.0699<0.001RR
18Diagnosis breast cancer non-registry-based study0.710.630.892<0.001RR
Pararas et al., 20225Tis-T1 stage1.140.871.48410.15OR
5T2 stage0.910.781.0600.6OR
5T3 stage1.180.821.788<0.001OR
6T4 stage1.190.791.880<0.001OR
6N+ stage10.891.1100.54OR
6M+ stage1.651.022.6791<0.001OR
7Right-sided tumors0.880.511.5299<0.001OR
7Left-sided tumors0.910.561.596<0.001OR
8Rectal tumors0.930.631.3795<0.001OR
3Emergency presantations1.741.072.8495<0.001OR
3Complicated tumor1.720.783.78820.004OR
3Neoadjuvant therapy1.221.091.3700.4OR
4Palliative internt surgery1.951.133.36540.09OR
6Minimally invasive surgery0.680.371.2498<0.001OR
5Stoma formation0.910.511.6294<0.001OR
2Morbidity0.920.551.55250.25OR
3Leng of hospital stay0.51−0.931.94790.008WMD
3Lymph node harvest1.57−1.995.13640.06WMD
Sarich et al., 202212Smoking prevalence0.870.790.9799<0.001PR
17Among smokers, smoking less prevalence0.210.140.399<0.001Prev
22Among smokers, smoking more0.270.220.3298<0.001Prev
17Among smokers, smoking unchanged0.50.410.5899<0.001Prev
6Among smokers, quit smoking0.040.010.0995<0.001Prev
4Among non-smokers, started smoking0.020.010.0392<0.001Prev
Sasidharanpillai and Ravishankar, 20227Women screened before the COVID-19 pandemic0.09790.060.1359100<0.001Prop
7Women screened during the COVID-19 pandemic0.04240.02770.0571100<0.001Prop
Tang et al., 202210Postoperative morbidity0.90.81.01260.22OR
8Postoperative mortality1.270.921.7500.57OR
4Converion rate1.070.751.52310.23OR
5Incidence of anastomotic leakage0.710.0719.2200.74OR
2Intensive care unit demand rate0.730.291.8500.5OR
4R1 resections rate0.460.111.900.48OR
5Mean lymph node yield0.16−2.262.59540.07MD
7Length of hospital stay−0.05−2.282.1998<0.001MD
Teglia et al., 2022a21Breast cancer screening January–October 20200.4670.3780.378NPNPPRED
21Breast cancer screening April 20200.740.5670.918NPNPPRED
21Breast cancer screening June–October 20200.13−0.070.33NPNPPRED
22Colorectal cancer screening January–October 20200.4490.3610.538NPNPPRED
21Colonoscopy screening January–October 20200.5250.3880.663NPNPPRED
21Fecal occult blood test or fecal immunochemical test January–October 20200.3780.2580.499NPNPPRED
21Colorectal cancer screening April 20200.6930.3691NPNPPRED
21Colorectal cancer screening June–October 20200.2340.0240.444NPNPPRED
11Cervical cancer screening January–October 20200.5180.3890.647NPNPPRED
21Cervical cancer screening March 20200.7880.5830.993NPNPPRED
PRED
Teglia et al., 2022bNPOverall treatment January–October 20200.1870.1330.241NPNPPRED
NPOverall treatment January–February 20200.0270.0450.1NPNPPRED
NPOverall treatment March 20200.1560.0760.237NPNPPRED
NPOverall treatment April 20200.2830.1940.372NPNPPRED
NPOverall treatment May 20200.2620.1760.041NPNPPRED
NPOverall treatment June–October 20200.160.0410.279NPNPPRED
NPOverall surgical treatment January–October 20200.3390.2790.399NPNPPRED
NPOverall surgical treatment January–February 20200.072−0.0930.238NPNPPRED
NPOverall surgical treatment March 20200.3070.2190.396NPNPPRED
NPOverall surgical treatment April 20200.3420.2390.445NPNPPRED
NPOverall surgical treatment May 20200.4160.3180.514NPNPPRED
NPOverall surgical treatment June–October 20200.3510.1860.516NPNPPRED
NPOverall medical treatment January–October 20200.1260.0480.204NPNPPRED
NPOverall medical treatment January–February 20200.015−0.0550.084NPNPPRED
NPOverall medical treatment March 20200.116−0.0120.233NPNPPRED
NPOverall medical treatment April 20200.2480.090.407NPNPPRED
NPOverall medical treatment May 20200.1960.0850.306NPNPPRED
NPOverall medical treatment June–October 20200.079−0.0780.236NPNPPRED
PRED
Vigliar et al., 202041Cytological samples over 4 weeks of the COVID-19 pandemic0.4530.0010.98NPNPPRED
41Ratio of exfoliative to fine needle aspiration samples0.890.741.0895<0.01OR
27Malignant diagnosis0.05560.03770.073581<0.01RD
  1. *

    Surveyed centers/operators.

  2. Estimates are during pandemic.

  3. Estimates are pandemic vs. pre-pandemic.

  4. LCI, lower confidence interval; IRR, incidence rate ratio; MD, mean difference; OR, odds ratio; PRED, percent reduction; PR, prevalence ratio; Prev, prevalence: Prop, proportion; RD, risk difference; RR, rate ratio; PPE, personal protective equipment; NP, not provided; UCI, upper confidence interval; SMD, standardized mean difference; WMD, weighted mean difference.

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taulant Muka
  2. Joshua JX Li
  3. Sahar J Farahani
  4. John PA Ioannidis
(2023)
An umbrella review of systematic reviews on the impact of the COVID-19 pandemic on cancer prevention and management, and patient needs
eLife 12:e85679.
https://doi.org/10.7554/eLife.85679