Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice

  1. Fangfang Song
  2. Won Dong Lee
  3. Tyler Marmo
  4. Xing Ji
  5. Chao Song
  6. Xueyang Liao
  7. Rebecca Seeley
  8. Lutian Yao
  9. Haoran Liu
  10. Fanxin Long  Is a corresponding author
  1. Children's Hospital of Philadelphia, United States
  2. Princeton University, United States
  3. New Jersey Institute of Technology, United States

Abstract

Skeletal fragility is associated with type 2 diabetes mellitus (T2D), but the underlying mechanism is not well understood. Here, in a mouse model for youth-onset T2D, we show that both trabecular and cortical bone mass are reduced due to diminished osteoblast activity. Stable isotope tracing in vivo with 13C-glucose demonstrates that both glycolysis and glucose fueling of the TCA cycle are impaired in diabetic bones. Similarly, Seahorse assays show suppression of both glycolysis and oxidative phosphorylation by diabetes in bone marrow mesenchymal cells as a whole, whereas single-cell RNA sequencing reveals distinct modes of metabolic dysregulation among the subpopulations. Metformin not only promotes glycolysis and osteoblast differentiation in vitro, but also improves bone mass in diabetic mice. Finally, osteoblast-specific overexpression of either Hif1a, a general inducer of glycolysis, or Pfkfb3 which stimulates a specific step in glycolysis, averts bone loss in T2D mice. The study identifies osteoblast-intrinsic defects in glucose metabolism as an underlying cause of diabetic osteopenia, which may be targeted therapeutically.

Data availability

scRNA-seq data has been deposited in GEO under access code GSE221936All source data for figures and the R script for scRNA analyses have been uploaded to Dryad (doi:10.5061/dryad.s7h44j1bc)

The following data sets were generated

Article and author information

Author details

  1. Fangfang Song

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9465-6083
  2. Won Dong Lee

    Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2344-171X
  3. Tyler Marmo

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xing Ji

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chao Song

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xueyang Liao

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rebecca Seeley

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lutian Yao

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Haoran Liu

    Department of Computer Science, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Fanxin Long

    Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, United States
    For correspondence
    longf1@chop.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9785-5379

Funding

National Institutes of Health (DK125498)

  • Fanxin Long

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were conducted in strict accordance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) at Children's Hospital of Philadelphia. The IACUC approval number is IAC 21-001296.

Copyright

© 2023, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,442
    views
  • 346
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fangfang Song
  2. Won Dong Lee
  3. Tyler Marmo
  4. Xing Ji
  5. Chao Song
  6. Xueyang Liao
  7. Rebecca Seeley
  8. Lutian Yao
  9. Haoran Liu
  10. Fanxin Long
(2023)
Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice
eLife 12:e85714.
https://doi.org/10.7554/eLife.85714

Share this article

https://doi.org/10.7554/eLife.85714

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Medicine
    Christin Krause, Jan H Britsemmer ... Henriette Kirchner
    Research Article

    Background:

    The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.

    Methods:

    Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.

    Results:

    Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182–5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182–5 p overexpression. Weight loss in obese mice decreased hepatic miR-182–5 p and restored Lrp6 expression and other miR-182–5 p target genes. Hepatic overexpression of miR-182–5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.

    Conclusions:

    By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182–5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182–5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.

    Funding:

    This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).