Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance in Cryptococcus neoformans

  1. Yang Meng
  2. Yue Ni
  3. Zhuoran Li
  4. Tianhang Jiang
  5. Tianshu Sun
  6. Yanjian Li
  7. Xindi Gao
  8. Hailong Li
  9. Chenhao Suo
  10. Chao Li
  11. Sheng Yang
  12. Tian Lan
  13. Guojian Liao
  14. Tongbao Liu
  15. Ping Wang
  16. Chen Ding  Is a corresponding author
  1. Northeastern University, China
  2. Chinese Academy of Medical Sciences & Peking Union Medical College, China
  3. The First Affiliated Hospital of China Medical University, China
  4. Southwest University, China
  5. Louisiana State University Health Sciences Center New Orleans, United States

Abstract

Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans. .

Data availability

The raw Isw1 proteome modification mass spectrometric data have been deposited to the Proteome Xchange (https://www.ebi.ac.uk/pride) with identifier PXD037150 (username: reviewer_pxd037150@ebi.ac.uk, password: flU9d0tA). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository (Chen T, 2022) with the dataset identifier PXD045338. The transcriptomics data (RNA-seq) is deposited in NCBI's Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and can be accessed through GEO Series accession ID GEO:GSE217187 and GSE235148. Any other data necessary to support the conclusions of this study are available in the supplementary data files and source data. Reagents and fungal strains are available from the authors upon request.

The following data sets were generated

Article and author information

Author details

  1. Yang Meng

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yue Ni

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhuoran Li

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Tianhang Jiang

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Tianshu Sun

    Department of Scientific Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanjian Li

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xindi Gao

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Hailong Li

    NHC Key Laboratory of AIDS Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Chenhao Suo

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Chao Li

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Sheng Yang

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Tian Lan

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Guojian Liao

    College of Pharmaceutical Sciences, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Tongbao Liu

    Medical Research Institut, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Ping Wang

    Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Chen Ding

    College of Life and Health Sciences, Northeastern University, Shenyang, China
    For correspondence
    dingchen@mail.neu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9195-2255

Funding

National Key Research and Development Program of China (2022YFC2303000)

  • Chen Ding

National Natural Science Foundation of China (31870140)

  • Chen Ding

Liaoning Revitalization Talents Program (XLYC1807001)

  • Chen Ding

National Institutes of Health (AI156254)

  • Ping Wang

National Institutes of Health (AI168867)

  • Ping Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Biology Tübingen, Germany

Ethics

Animal experimentation: All animal experiments were reviewed and ethically approved by the Research Ethics Committees of the National Clinical Research Center for Laboratory Medicine of the First Affiliated Hospital of China Medical University (KT2022284) and were carried out in accordance with the regulations in the Guide for the Care and Use of Laboratory Animals issued by the Ministry of Science and Technology of the People's Republic of China. Infections with C. neoformans were performed via the intranasal route. Four- to six-week-old female Balb/c mice were purchased from Changsheng Biotech (Liaoning, China) and used for survival and fungal burden analyses.

Version history

  1. Received: December 21, 2022
  2. Preprint posted: December 30, 2022 (view preprint)
  3. Accepted: January 21, 2024
  4. Accepted Manuscript published: January 22, 2024 (version 1)
  5. Version of Record published: February 1, 2024 (version 2)

Copyright

© 2024, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 373
    views
  • 69
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Meng
  2. Yue Ni
  3. Zhuoran Li
  4. Tianhang Jiang
  5. Tianshu Sun
  6. Yanjian Li
  7. Xindi Gao
  8. Hailong Li
  9. Chenhao Suo
  10. Chao Li
  11. Sheng Yang
  12. Tian Lan
  13. Guojian Liao
  14. Tongbao Liu
  15. Ping Wang
  16. Chen Ding
(2024)
Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance in Cryptococcus neoformans
eLife 13:e85728.
https://doi.org/10.7554/eLife.85728

Share this article

https://doi.org/10.7554/eLife.85728

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

    1. Microbiology and Infectious Disease
    Cenk Celik, Stella Tue Ting Lee ... Guillaume Thibault
    Research Article

    Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.