Building resilient cervical cancer prevention through gender-neutral HPV vaccination

  1. Irene Man
  2. Damien Georges
  3. Rengaswamy Sankaranarayanan
  4. Partha Basu
  5. Iacopo Baussano  Is a corresponding author
  1. International Agency for Research on Cancer (IARC/WHO), Early Detection, Prevention and Infections Branch, France
  2. Karkinos Healthcare, India
13 figures, 1 table and 5 additional files

Figures

Resilience against HPV vaccination disruption in the base case.

Predicted resilience, defined as life-time number of cervical cancer cases still prevented in the birth cohorts with disruption of vaccination per 100,000 girls born (blue arrow), and drop in …

Resilience against HPV vaccination disruption in sensitivity analyses on duration of disruption.

Predicted life-time cervical cancer cases prevented by birth cohorts (per 100,000 girls born) under different durations of disruption (panel) and in the four highlighted scenarios: girls-only …

Progress towards cervical cancer elimination over time.

Predicted cervical cancer age-standardised incidence (in cases per 100,000 woman-years) in the years since start of vaccination in India under no vaccination and in the four highlighted scenarios. …

Attainment of cervical cancer elimination in the long term.

Heatmap of the predicted cervical cancer age-standardised incidence rate (in cases per 100,000 woman-years) in the long term (i.e., at 100 years after the start of vaccination) in India by …

Appendix 1—figure 1
Structure of HPV natural history in EpiMetHeos.
Appendix 1—figure 2
Model fit of the target statistics of sexual contact behaviour.

Left column: West Bengal. Right column: Tamil Nadu. Circle: targets derived from data. Triangle: fit by model.

Appendix 1—figure 3
Model fit of the type-specific HPV prevalence data.

Panel A: West Bengal. Panel B: Tamil Nadu. Model estimates of HPV prevalence of each of the 100 best-fitting parameter sets are given by a separate line. The confidence intervals of the observed HPV …

Appendix 1—figure 4
Age-specific cervical cancer incidence data by Indian state.
Appendix 1—figure 5
Mean of age-specific cervical cancer incidence of the cluster of Indian states.
Appendix 2—figure 1
Resilience against HPV vaccination disruption in the base case by Indian state.

Predicted HPV vaccination resilience, defined as life-time number of cervical cancer cases still prevented in the birth cohorts with disruption of vaccination per 100,000 girls born (blue arrow), …

Appendix 2—figure 2
Resilience against HPV vaccination disruption in sensitivity analyses on coverage at disruption by Indian state.

Predicted HPV vaccination resilience, defined as life-time number of cervical cancer cases still prevented in the birth cohorts with disruption of vaccination per 100,000 girls born (blue arrow), …

Appendix 2—figure 3
Resilience against HPV vaccination disruption in sensitivity analyses on duration of disruption by Indian state.

Predicted HPV vaccination resilience, defined as life-time number of cervical cancer cases still prevented in the birth cohorts with disruption of vaccination per 100,000 girls born (blue arrow), …

Appendix 2—figure 4
Progress towards cervical cancer elimination over time with and without disruption.

Predicted cervical cancer age-standardised incidence (in cases per 100,000 woman-years) in the years since start of vaccination in the four highlighted scenarios with (dashed curves) and without …

Tables

Table 1
Sensitivity analyses on coverage at disruption and duration of disruption on resilience.

Life-time number of cervical cancer cases prevented per 100,000 girls born in birth cohorts vaccinated prior to disruption in part I. Sensitivity analyses on coverage at disruption in part II and on …

I. Life-time number of cervical cancer cases prevented prior to disruption
ScenarioGO 60%GO 90%GN 60%GN 90%
No disruption562 (444, 676)773 (701, 836)647 (539, 746)807 (752, 853)
II. Sensitivity analyses on coverage at disruption (with duration of disruption fixed at 5 years)
Coverage at disruption in %Resilience by vaccination strategy and coverageResilience ratio
GO 60%GO 90%GN 60%GN 90%GO 60% to GO 90%GO 60% to GN 60%GO 90% to GN 90%
0 (base case)107 (7, 214)209 (81, 340)302 (170, 437)464 (328, 602)2.02.82.2
20271 (155, 391)355 (221, 490)425 (297, 559)550 (416, 680)1.31.61.6
40410 (277, 534)476 (343, 599)527 (401, 647)621 (500, 730)1.21.31.3
III. Sensitivity analyses on duration of disruption (with coverage at disruption fixed at 0%)
Duration of disruption in yearsResilience by vaccination strategy and coverageResilience ratio
GO 60%GO 90%GN 60%GN 90%GO 60% to GO 90%GO 60% to GN 60%GO 90% to GN 90%
1137 (26, 253)261 (125, 407)365 (215, 502)517 (372, 655)1.92.72.0
2125 (17, 233)240 (105, 375)344 (206, 480)500 (359, 642)1.92.72.1
5 (base case)107 (7, 214)209 (81, 340)302 (170, 437)464 (328, 602)2.02.82.2
1080 (0, 182)154 (33, 275)226 (96, 358)382 (240, 525)1.92.82.5

Additional files

MDAR checklist
https://cdn.elifesciences.org/articles/85735/elife-85735-mdarchecklist1-v1.docx
Supplementary file 1

List of model parameters.

https://cdn.elifesciences.org/articles/85735/elife-85735-supp1-v1.docx
Supplementary file 2

Data related to Appendix 1.

(A) Overview of available cancer incidence data from local registries by Indian state. (B) Age-specific cervical cancer incidence data by Indian state. (C) Mortality rate of India. (D) Type-specific contribution of HPV types in cervical cancer. (E) Standard world population (Segi, 1960). (F) Female population size by Indian state.(G) Pre-vaccination risk of cervical cancer by Indian state.

https://cdn.elifesciences.org/articles/85735/elife-85735-supp2-v1.docx
Supplementary file 3

Sensitivity analyses on coverage at disruption and duration of disruption on resilience by Indian state.

https://cdn.elifesciences.org/articles/85735/elife-85735-supp3-v1.docx
Reporting standard 1

HPV-FRAME checklist (Canfell et al., 2019).

https://cdn.elifesciences.org/articles/85735/elife-85735-repstand1-v1.docx

Download links