Kindlin-1 regulates IL-6 secretion and modulates the immune environment in breast cancer models

Abstract

The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 2, 4, 5 and 6

The following previously published data sets were used

Article and author information

Author details

  1. Emily R Webb

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Emily.webb@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9339-4544
  2. Georgia L Dodd

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Michaela Noskova

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  4. Esme Bullock

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  5. Morwenna Muir

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  6. Margaret C Frame

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    Margaret C Frame, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5882-1942
  7. Alan Serrels

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4992-6077
  8. Valerie G Brunton

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    v.brunton@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7778-8794

Funding

Cancer Research UK (C157/A24837)

  • Emily R Webb

Cancer Research UK (C157/A29279)

  • Emily R Webb
  • Georgia L Dodd
  • Michaela Noskova
  • Esme Bullock
  • Morwenna Muir
  • Margaret C Frame
  • Alan Serrels
  • Valerie G Brunton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in compliance with UK Home Office regulations underproject licence PP7510272. All animal procedures were approved by the University of Edinburgh Animal Welfare & Ethical Review Body (AWERB) approval PL05-21, and in accordance with the principles of the 3Rs. Every effort was made to minimise suffering.

Copyright

© 2023, Webb et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,140
    views
  • 202
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily R Webb
  2. Georgia L Dodd
  3. Michaela Noskova
  4. Esme Bullock
  5. Morwenna Muir
  6. Margaret C Frame
  7. Alan Serrels
  8. Valerie G Brunton
(2023)
Kindlin-1 regulates IL-6 secretion and modulates the immune environment in breast cancer models
eLife 12:e85739.
https://doi.org/10.7554/eLife.85739

Share this article

https://doi.org/10.7554/eLife.85739

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Cancer Biology
    Ke Ning, Yuanyuan Xie ... Ling Yu
    Research Article

    For traditional laboratory microscopy observation, the multi-dimensional, real-time, in situ observation of three-dimensional (3D) tumor spheroids has always been the pain point in cell spheroid observation. In this study, we designed a side-view observation petri dish/device that reflects light, enabling in situ observation of the 3D morphology of cell spheroids using conventional inverted laboratory microscopes. We used a 3D-printed handle and frame to support a first-surface mirror, positioning the device within a cell culture petri dish to image cell spheroid samples. The imaging conditions, such as the distance between the mirror and the 3D spheroids, the light source, and the impact of the culture medium, were systematically studied to validate the in situ side-view observation. The results proved that placing the surface mirror adjacent to the spheroids enables non-destructive in situ real-time tracking of tumor spheroid formation, migration, and fusion dynamics. The correlation between spheroid thickness and dark core appearance under light microscopy and the therapeutic effects of chemotherapy doxorubicin and natural killer cells on spheroids’ 3D structure was investigated.