Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid

  1. Esteban Suárez-Delgado
  2. Maru Orozco-Contreras
  3. Gisela E Rangel-Yescas
  4. Leon D Islas  Is a corresponding author
  1. Universidad Nacional Autónoma de México, Mexico

Abstract

Voltage-dependent gating of the voltage-gated proton channels (HV1) remains poorly understood, partly because of the difficulty of obtaining direct measurements of voltage sensor movement in the form of gating currents. To circumvent this problem, we have implemented patch-clamp fluorometry in combination with the incorporation of the fluorescent non-canonical amino acid Anap to monitor channel opening and movement of the S4 segment. Simultaneous recording of currents and fluorescence signals allows for direct correlation of these parameters and investigation of their dependence on voltage and the pH gradient (DpH). We present data that indicate that Anap incorporated in the S4 helix is quenched by an aromatic residue located in the S2 helix, and that motion of the S4 relative to this quencher is responsible for fluorescence increases upon depolarization. The kinetics of the fluorescence signal reveals the existence of a very slow transition in the deactivation pathway, which seems to be singularly regulated by DpH. Our experiments also suggest that the voltage sensor can move after channel opening and that the absolute value of the pH can influence the channel opening step. These results shed light on the complexities of voltage-dependent opening of human HV1 channels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Esteban Suárez-Delgado

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  2. Maru Orozco-Contreras

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  3. Gisela E Rangel-Yescas

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  4. Leon D Islas

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    For correspondence
    leon.islas@gmail.com
    Competing interests
    Leon D Islas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7461-5214

Funding

Programa de Doctorado en Ciencias Bioquimicas-UNAM (CONACyT No. 463819 (CVU 659182))

  • Esteban Suárez-Delgado

Programa de Doctorado en Ciencias Bioquimicas-UNAM (CONACyT No. 788807 (CVU 1101710))

  • Maru Orozco-Contreras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephan A Pless, University of Copenhagen, Denmark

Version history

  1. Preprint posted: July 1, 2022 (view preprint)
  2. Received: December 28, 2022
  3. Accepted: January 19, 2023
  4. Accepted Manuscript published: January 25, 2023 (version 1)
  5. Version of Record published: February 13, 2023 (version 2)

Copyright

© 2023, Suárez-Delgado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,159
    views
  • 168
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Esteban Suárez-Delgado
  2. Maru Orozco-Contreras
  3. Gisela E Rangel-Yescas
  4. Leon D Islas
(2023)
Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid
eLife 12:e85836.
https://doi.org/10.7554/eLife.85836

Share this article

https://doi.org/10.7554/eLife.85836

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article Updated

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.