Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid

  1. Esteban Suárez-Delgado
  2. Maru Orozco-Contreras
  3. Gisela E Rangel-Yescas
  4. Leon D Islas  Is a corresponding author
  1. Universidad Nacional Autónoma de México, Mexico

Abstract

Voltage-dependent gating of the voltage-gated proton channels (HV1) remains poorly understood, partly because of the difficulty of obtaining direct measurements of voltage sensor movement in the form of gating currents. To circumvent this problem, we have implemented patch-clamp fluorometry in combination with the incorporation of the fluorescent non-canonical amino acid Anap to monitor channel opening and movement of the S4 segment. Simultaneous recording of currents and fluorescence signals allows for direct correlation of these parameters and investigation of their dependence on voltage and the pH gradient (DpH). We present data that indicate that Anap incorporated in the S4 helix is quenched by an aromatic residue located in the S2 helix, and that motion of the S4 relative to this quencher is responsible for fluorescence increases upon depolarization. The kinetics of the fluorescence signal reveals the existence of a very slow transition in the deactivation pathway, which seems to be singularly regulated by DpH. Our experiments also suggest that the voltage sensor can move after channel opening and that the absolute value of the pH can influence the channel opening step. These results shed light on the complexities of voltage-dependent opening of human HV1 channels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Esteban Suárez-Delgado

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  2. Maru Orozco-Contreras

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  3. Gisela E Rangel-Yescas

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  4. Leon D Islas

    Department of Physiology, Universidad Nacional Autónoma de México, México City, Mexico
    For correspondence
    leon.islas@gmail.com
    Competing interests
    Leon D Islas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7461-5214

Funding

Programa de Doctorado en Ciencias Bioquimicas-UNAM (CONACyT No. 463819 (CVU 659182))

  • Esteban Suárez-Delgado

Programa de Doctorado en Ciencias Bioquimicas-UNAM (CONACyT No. 788807 (CVU 1101710))

  • Maru Orozco-Contreras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Suárez-Delgado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,329
    views
  • 183
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Esteban Suárez-Delgado
  2. Maru Orozco-Contreras
  3. Gisela E Rangel-Yescas
  4. Leon D Islas
(2023)
Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid
eLife 12:e85836.
https://doi.org/10.7554/eLife.85836

Share this article

https://doi.org/10.7554/eLife.85836