Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells

  1. Robert Machold
  2. Shlomo Dellal
  3. Manuel Valero
  4. Hector Zurita
  5. Illya Kruglikov
  6. John Hongyu Meng
  7. Jessica L Hanson
  8. Yoshiko Hashikawa
  9. Benjamin Schuman
  10. György Buzsáki
  11. Bernardo Rudy  Is a corresponding author
  1. New York University, United States
  2. Hospital del Mar Medical Research Institute (IMIM), Spain
  3. University of Colorado Boulder, United States

Abstract

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1, 2, 4, Table 1, Figure 1 - figure supplement 1 and Figure 1 - figure supplement 2.

The following previously published data sets were used
    1. Yao et al.
    (2021) Whole Cortex and Hippocampus - 10x genomics (2020) with 10x-Smart-Seq Taxonomy
    https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x.

Article and author information

Author details

  1. Robert Machold

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6261-496X
  2. Shlomo Dellal

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Manuel Valero

    Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Hector Zurita

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Illya Kruglikov

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John Hongyu Meng

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica L Hanson

    Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yoshiko Hashikawa

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Benjamin Schuman

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. György Buzsáki

    Neuroscience Institute, Langone Medical Center, Department of Neurology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3100-4800
  11. Bernardo Rudy

    Neuroscience Institute, New York University, New York, United States
    For correspondence
    Bernardo.Rudy@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1367-7136

Funding

National Institutes of Health (P01NS074972)

  • Bernardo Rudy

National Institutes of Health (R01NS110079)

  • Bernardo Rudy

National Institutes of Health (U19NS107616)

  • György Buzsáki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental animals were handled with care to minimize suffering in accordance with institutional animal care and use committee (IACUC) protocols approved by the Division of Comparative Medicine at the NYU Langone Medical Center for Dr. Bernardo Rudy's lab (#IA15-01465 and #IA15-01473).

Copyright

© 2023, Machold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.85893

Further reading

    1. Neuroscience
    Lotfi Ferhat, Rabia Soussi ... Michel Khrestchatisky
    Research Article

    Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate ‘vectorized’ forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.

    1. Neuroscience
    Simon Weiler, Manuel Teichert, Troy W Margrie
    Research Article

    The neocortex comprises anatomically discrete yet interconnected areas that are symmetrically located across the two hemispheres. Determining the logic of these macrocircuits is necessary for understanding high level brain function. Here in mice, we have mapped the areal and laminar organization of the ipsi- and contralateral cortical projection onto the primary visual, somatosensory, and motor cortices. We find that although the ipsilateral hemisphere is the primary source of cortical input, there is substantial contralateral symmetry regarding the relative contribution and areal identity of input. Laminar analysis of these input areas show that excitatory Layer 6 corticocortical cells (L6 CCs) are a major projection pathway within and between the two hemispheres. Analysis of the relative contribution of inputs from supra- (feedforward) and infragranular (feedback) layers reveals that contra-hemispheric projections reflect a dominant feedback organization compared to their ipsi-cortical counterpart. The magnitude of the interhemispheric difference in hierarchy was largest for sensory and motor projection areas compared to frontal, medial, or lateral brain areas due to a proportional increase in input from L6 neurons. L6 CCs therefore not only mediate long-range cortical communication but also reflect its inherent feedback organization.