Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells

  1. Robert Machold
  2. Shlomo Dellal
  3. Manuel Valero
  4. Hector Zurita
  5. Illya Kruglikov
  6. John Hongyu Meng
  7. Jessica L Hanson
  8. Yoshiko Hashikawa
  9. Benjamin Schuman
  10. György Buzsáki
  11. Bernardo Rudy  Is a corresponding author
  1. New York University, United States
  2. Hospital del Mar Medical Research Institute (IMIM), Spain
  3. University of Colorado Boulder, United States

Abstract

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1, 2, 4, Table 1, Figure 1 - figure supplement 1 and Figure 1 - figure supplement 2.

The following previously published data sets were used
    1. Yao et al.
    (2021) Whole Cortex and Hippocampus - 10x genomics (2020) with 10x-Smart-Seq Taxonomy
    https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x.

Article and author information

Author details

  1. Robert Machold

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6261-496X
  2. Shlomo Dellal

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Manuel Valero

    Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Hector Zurita

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Illya Kruglikov

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John Hongyu Meng

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica L Hanson

    Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yoshiko Hashikawa

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Benjamin Schuman

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. György Buzsáki

    Neuroscience Institute, Langone Medical Center, Department of Neurology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3100-4800
  11. Bernardo Rudy

    Neuroscience Institute, New York University, New York, United States
    For correspondence
    Bernardo.Rudy@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1367-7136

Funding

National Institutes of Health (P01NS074972)

  • Bernardo Rudy

National Institutes of Health (R01NS110079)

  • Bernardo Rudy

National Institutes of Health (U19NS107616)

  • György Buzsáki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental animals were handled with care to minimize suffering in accordance with institutional animal care and use committee (IACUC) protocols approved by the Division of Comparative Medicine at the NYU Langone Medical Center for Dr. Bernardo Rudy's lab (#IA15-01465 and #IA15-01473).

Copyright

© 2023, Machold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,536
    views
  • 255
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert Machold
  2. Shlomo Dellal
  3. Manuel Valero
  4. Hector Zurita
  5. Illya Kruglikov
  6. John Hongyu Meng
  7. Jessica L Hanson
  8. Yoshiko Hashikawa
  9. Benjamin Schuman
  10. György Buzsáki
  11. Bernardo Rudy
(2023)
Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells
eLife 12:e85893.
https://doi.org/10.7554/eLife.85893

Share this article

https://doi.org/10.7554/eLife.85893

Further reading

    1. Neuroscience
    Yevgenia Rosenblum, Mahdad Jafarzadeh Esfahani ... Martin Dresler
    Research Article

    Sleep cycles are defined as episodes of non-rapid eye movement (non-REM) sleep followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well-established marker of arousal and sleep stages measured using electroencephalography. We introduce a new concept of ‘fractal cycles’ of sleep, defined as a time interval during which time series of fractal activity descend to their local minimum and ascend to the next local maximum. We assess correlations between fractal and classical (i.e. non-REM – REM) sleep cycle durations and study cycles with skipped REM sleep. The sample comprised 205 healthy adults, 21 children and adolescents and 111 patients with depression. We found that fractal and classical cycle durations (89±34 vs 90±25 min) correlated positively (r=0.5, p<0.001). Children and adolescents had shorter fractal cycles than young adults (76±34 vs 94±32 min). The fractal cycle algorithm detected cycles with skipped REM sleep in 91–98% of cases. Medicated patients with depression showed longer fractal cycles compared to their unmedicated state (107±51 vs 92±38 min) and age-matched controls (104±49 vs 88±31 min). In conclusion, fractal cycles are an objective, quantifiable, continuous and biologically plausible way to display sleep neural activity and its cycles.

    1. Medicine
    2. Neuroscience
    Gansheng Tan, Anna L Huguenard ... Eric C Leuthardt
    Research Article

    Background:

    Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function.

    Methods:

    In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement.

    Results:

    We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen’s d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge.

    Conclusions:

    Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

    Funding:

    The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB).

    Clinical trial number:

    NCT04557618.