An antagonism between Spinophilin and Syd-1 operates upstream of memory-promoting presynaptic long-term plasticity

  1. Niraja Ramesh
  2. Marc Escher
  3. Oriane Turrel
  4. Janine Lützkendorf
  5. Tanja Matkovic-Rachid
  6. Fan Liu
  7. Stephan J Sigrist  Is a corresponding author
  1. Freie Universität Berlin, Germany
  2. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany

Abstract

We still face fundamental gaps in understanding how molecular plastic changes of synapses intersect with circuit operation to define behavioral states. Here we show that an antagonism between two conserved regulatory proteins, Spinophilin (Spn) and Syd-1, controls presynaptic long-term plasticity and the maintenance of olfactory memories in Drosophila. While Spn mutants could not trigger nanoscopic active zone remodeling under homeostatic challenge and failed to stably potentiate neurotransmitter release, concomitant reduction of Syd-1 rescued all these deficits. The Spn/Syd-1 antagonism converged on active zone close F-actin, and genetic or acute pharmacological depolymerization of F-actin rescued the Spn deficits by allowing access to synaptic vesicle release sites. Within the intrinsic mushroom body neurons, the Spn/Syd-1 antagonism specifically controlled olfactory memory stabilization but not initial learning. Thus, this evolutionarily conserved protein complex controls behaviorally relevant presynaptic long-term plasticity, also observed in the mammalian brain but still enigmatic concerning its molecular mechanisms and behavioral relevance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures.

Article and author information

Author details

  1. Niraja Ramesh

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2867-7131
  2. Marc Escher

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Oriane Turrel

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2174-7659
  4. Janine Lützkendorf

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5051-6281
  5. Tanja Matkovic-Rachid

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Liu

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan J Sigrist

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    For correspondence
    stephan.sigrist@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1698-5815

Funding

Deutsche Forschungsgemeinschaft (EXC 2049 (#390688087))

  • Stephan J Sigrist

Deutsche Forschungsgemeinschaft (TRR186/ A03 (#278001972))

  • Stephan J Sigrist

Deutsche Forschungsgemeinschaft (NeuroNex2 (#436260754))

  • Stephan J Sigrist

Deutsche Forschungsgemeinschaft (FOR5228 (#447288260))

  • Stephan J Sigrist

European Research Council ([ERC-AdG Synprotect"]")

  • Stephan J Sigrist

NanoSYNDIV (SI 849/10-1)

  • Oriane Turrel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ramesh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 869
    views
  • 137
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niraja Ramesh
  2. Marc Escher
  3. Oriane Turrel
  4. Janine Lützkendorf
  5. Tanja Matkovic-Rachid
  6. Fan Liu
  7. Stephan J Sigrist
(2023)
An antagonism between Spinophilin and Syd-1 operates upstream of memory-promoting presynaptic long-term plasticity
eLife 12:e86084.
https://doi.org/10.7554/eLife.86084

Share this article

https://doi.org/10.7554/eLife.86084

Further reading

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.

    1. Neuroscience
    Mohsen Alavash
    Insight

    Combining electrophysiological, anatomical and functional brain maps reveals networks of beta neural activity that align with dopamine uptake.