Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics

Abstract

The functional maturation of neurons is a prolonged process that extends past mitotic exit and is mediated by the chromatin-dependent orchestration of gene transcription programs. We find that expression of this maturation gene program in mouse cerebellar granule neurons (CGNs) requires dynamic changes in the genomic distribution of histone H3 lysine 27 trimethylation (H3K27me3), demonstrating a function for this chromatin modification beyond its role in cell fate specification. The developmental loss of H3K27me3 at promoters of genes activated as CGNs mature is facilitated by the lysine demethylase and ASD-risk gene, Kdm6b. Interestingly, inhibition of the H3K27 methyltransferase EZH2 in newborn CGNs not only blocks the repression of progenitor genes but also impairs the induction of mature CGN genes, showing the importance of bidirectional H3K27me3 regulation across the genome. These data demonstrate that H3K27me3 turnover in developing postmitotic neurons regulates the temporal coordination of gene expression programs that underlie functional neuronal maturation.

Data availability

H3K27me3 ChIP-seq data for P7, P14 and P60 cerebellum, WT and Kdm6b-cKO cerebellum; RNA-seq data for WT and Kdm6b-cKO cerebellum; CUT&RUN and RNA-seq data for cultured CGNs can be accessed at GEO: GSE212441.RNA-seq data for P7, P14 and P60 cerebellum and DIV0 and DIV7 CGNs, H3K27ac, ZIC1/2 ChIP-seq data and DHS-seq data for P7 and P60 cerebellum were adapted from Frank et. al 2015 (PMID: 25849986)H3K4me3 ChIP-seq data from P6 and P22 cerebellum were obtained and adapted from (Yamada et al., 2014) and can be accessed at GEO: GSE57758. H3K4me1 ChIP-seq data from P9 cerebellum was obtained and adapted from (Ramirez et al., 2022) and can be accessed at GEO: GSE183697. H3K4me3 PLAC-seq tracks were obtained from (Yamada et al., 2019) and can be accessed at GEO: GSE127995.Source data files for western blots in Figure 1, 7, S1 and S9 are included in Supplemental Files.Primers used to perform RT-qPCR have been provided in Table S1.DESeq2-normalized counts used to generate heatmaps in the study have been provided in Table S2.Gene lists used for Gene Ontology analyses have been provided in Table S3.Tables S1, S3 and S3 are included in Supplemental Files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Vijyendra Ramesh

    Molecular Cancer Biology Program, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8818-6863
  2. Fang Liu

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  3. Melyssa S Minto

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5438-7285
  4. Urann Chan

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  5. Anne E West

    Molecular Cancer Biology Program, Duke University, Durham, United States
    For correspondence
    west@neuro.duke.edu
    Competing interests
    Anne E West, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0846-139X

Funding

National Institutes of Health (R01NS0988804)

  • Anne E West

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gail Mandel, Oregon Health and Science University, United States

Ethics

Animal experimentation: We performed all procedures under an approved protocol from the Duke University Institutional Animal Care and Use Committee, (#A035-20-02).

Version history

  1. Preprint posted: October 10, 2022 (view preprint)
  2. Received: January 18, 2023
  3. Accepted: April 21, 2023
  4. Accepted Manuscript published: April 24, 2023 (version 1)
  5. Version of Record published: May 12, 2023 (version 2)

Copyright

© 2023, Ramesh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,384
    views
  • 189
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vijyendra Ramesh
  2. Fang Liu
  3. Melyssa S Minto
  4. Urann Chan
  5. Anne E West
(2023)
Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics
eLife 12:e86273.
https://doi.org/10.7554/eLife.86273

Share this article

https://doi.org/10.7554/eLife.86273

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.