A class-specific effect of dysmyelination on the excitability of hippocampal interneurons

  1. Delphine Pinatel
  2. Edouard Pearlstein
  3. Giulia Bonetto
  4. Laurence Goutebroze
  5. Domna Karagogeos
  6. Valérie Crepel
  7. Catherine Faivre-Sarrailh  Is a corresponding author
  1. INSERM, Aix Marseille University, France
  2. INSERM UMR-S 1270, Sorbonne Universite, France
  3. University of Crete, Greece

Abstract

The role of myelination for axonal conduction is well-established in projection neurons but little is known about its significance in GABAergic interneurons. Myelination is discontinuous along interneuron axons and the mechanisms controlling myelin patterning and segregation of ion channels at the nodes of Ranvier have not been elucidated. Protein 4.1B is implicated in the organization of the nodes of Ranvier as a linker between paranodal and juxtaparanodal membrane proteins to the spectrin cytoskeleton. In the present study, 4.1B KO mice are used as a genetic model to analyze the functional role of myelin in Lhx6-positive parvalbumin (PV) and somatostatin (SST) neurons, two major classes of GABAergic neurons in the hippocampus. We show that 4.1B-deficiency induces disruption of juxtaparanodal K+ channel clustering and mislocalization of nodal or heminodal Na+ channels. Strikingly, 4.1B-deficiency causes loss of myelin in GABAergic axons in the hippocampus. In particular, stratum oriens SST cells display severe axonal dysmyelination and a reduced excitability. This reduced excitability is associated with a decrease in occurrence probability of small amplitude synaptic inhibitory events on pyramidal cells. In contrast, stratum pyramidale fast-spiking PV cells do not appear affected. In conclusion, our results indicate a class-specific effect of dysmyelination on the excitability of hippocampal interneurons associated with a functional alteration of inhibitory drive.

Data availability

All data generated or analyzed during this study are included in the manuscript (source data files for Figure 1-9)

Article and author information

Author details

  1. Delphine Pinatel

    UMR1249, INMED, INSERM, Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  2. Edouard Pearlstein

    UMR1249, INMED, INSERM, Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9405-5667
  3. Giulia Bonetto

    UMR1249, INMED, INSERM, Aix Marseille University, Marseille, France
    Competing interests
    Giulia Bonetto, is affiliated with AstraZeneca. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1469-2004
  4. Laurence Goutebroze

    INSERM UMR-S 1270, Sorbonne Universite, Paris, France
    Competing interests
    No competing interests declared.
  5. Domna Karagogeos

    Department of Basic Sciences, University of Crete, Heraklion, Greece
    Competing interests
    No competing interests declared.
  6. Valérie Crepel

    INMED UMR1249, INSERM, Aix Marseille University, Marseille cedex 09, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0408-3766
  7. Catherine Faivre-Sarrailh

    UMR1249, INMED, INSERM, Aix Marseille University, Marseille, France
    For correspondence
    catherine.sarrailh@univ-amu.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1718-0533

Funding

Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques (Postdoc fellowship)

  • Delphine Pinatel

Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques (Grant)

  • Domna Karagogeos

Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques (Grant)

  • Catherine Faivre-Sarrailh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The care and use of mice in all experiments were carried out according to the European and Institutional guidelines for the care and use of laboratory animals and approved by the local authority (laboratory's agreement number D13-055-8, Préfecture des Bouches du Rhône).

Copyright

© 2023, Pinatel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 787
    views
  • 130
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Delphine Pinatel
  2. Edouard Pearlstein
  3. Giulia Bonetto
  4. Laurence Goutebroze
  5. Domna Karagogeos
  6. Valérie Crepel
  7. Catherine Faivre-Sarrailh
(2023)
A class-specific effect of dysmyelination on the excitability of hippocampal interneurons
eLife 12:e86469.
https://doi.org/10.7554/eLife.86469

Share this article

https://doi.org/10.7554/eLife.86469

Further reading

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.