Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons

  1. Prithviraj Rajebhosale
  2. Mala R Ananth
  3. Ronald Kim
  4. Richard B Crouse
  5. Li Jiang
  6. Gretchen López- Hernández
  7. Chongbo Zhong
  8. Christian Arty
  9. Shaohua Wang
  10. Alice Jone
  11. Niraj S Desai
  12. Yulong Li
  13. Marina R Picciotto
  14. Lorna W Role  Is a corresponding author
  15. David A Talmage  Is a corresponding author
  1. National Institute of Neurological Disorders and Stroke, United States
  2. Yale University, United States
  3. Kansas City University of Medicine and Biosciences, United States
  4. LinkedIn, United States
  5. National Institute of Environmental Health Sciences, United States
  6. Steris, United States
  7. Peking University, China

Abstract

Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically-encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can 'learn' the association between a naïve tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24h later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.

Data availability

Source data for the fiber photometry experiments presented in Figure 1 and supplements are provided as individual source data files.

Article and author information

Author details

  1. Prithviraj Rajebhosale

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9893-3025
  2. Mala R Ananth

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ronald Kim

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard B Crouse

    Office of New Haven Affairs, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9509-9263
  5. Li Jiang

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gretchen López- Hernández

    Kansas City University of Medicine and Biosciences, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chongbo Zhong

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christian Arty

    LinkedIn, Sunnyvale, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shaohua Wang

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alice Jone

    Regulatory Affairs Division, Steris, Mentor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Niraj S Desai

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yulong Li

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Marina R Picciotto

    Department of Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4404-1280
  14. Lorna W Role

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    Lorna.Role@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5851-212X
  15. David A Talmage

    NINDS, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    david.talmage@NIH.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4627-3007

Funding

National Institute of Neurological Disorders and Stroke (1ZIANS009424)

  • David A Talmage

National Institute of Neurological Disorders and Stroke (1ZIANS009416,1ZIANS009422)

  • Lorna W Role

National Institute of Neurological Disorders and Stroke (NS22061)

  • Lorna W Role
  • David A Talmage

National Institute of Mental Health (U01-MH109104)

  • Lorna W Role
  • David A Talmage

National Institute of Mental Health (MH077681)

  • Marina R Picciotto

National Institute on Drug Abuse (DA14241,DA037566)

  • Marina R Picciotto

National Institute of Neurological Disorders and Stroke (NS007224)

  • Richard B Crouse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua Johansen, RIKEN Center for Brain Science, Japan

Ethics

Animal experimentation: All animal care and experimental procedures were approved by the Animal Care and Use Committees (ACUC) of the National Institute of Neurological Disorders & Stroke (NINDS) (Protocol #1531), SUNY Research Foundation at Stony Brook University (Protocol #1618), and Yale University (Protocol #2019-07895).

Version history

  1. Preprint posted: May 3, 2021 (view preprint)
  2. Received: February 1, 2023
  3. Accepted: February 14, 2024
  4. Accepted Manuscript published: February 16, 2024 (version 1)
  5. Version of Record published: March 11, 2024 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 762
    views
  • 138
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prithviraj Rajebhosale
  2. Mala R Ananth
  3. Ronald Kim
  4. Richard B Crouse
  5. Li Jiang
  6. Gretchen López- Hernández
  7. Chongbo Zhong
  8. Christian Arty
  9. Shaohua Wang
  10. Alice Jone
  11. Niraj S Desai
  12. Yulong Li
  13. Marina R Picciotto
  14. Lorna W Role
  15. David A Talmage
(2024)
Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons
eLife 13:e86581.
https://doi.org/10.7554/eLife.86581

Share this article

https://doi.org/10.7554/eLife.86581

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.