The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation

  1. Robert J Bastidas  Is a corresponding author
  2. Mateusz Kędzior
  3. Robert K Davidson
  4. Stephen C Walsh
  5. Lee Dolat
  6. Barbara S Sixt
  7. Jonathan N Pruneda
  8. Jörn Coers
  9. Raphael H Valdivia  Is a corresponding author
  1. Department of Integrative Immunobiology, Duke University, United States
  2. Department of Molecular Genetics and Microbiology, Duke University, United States
  3. Deparment of Molecular Biology, Umeå University, Sweden
  4. The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Sweden
  5. Umeå Centre for Microbial Research (UCMR), Umeå University, Sweden
  6. Department of Molecular Microbiology & Immunology, Oregon Health & Science University, United States
8 figures, 1 table and 11 additional files

Figures

Figure 1 with 4 supplements
The C. trachomatis inclusion membrane proteins InaC, IpaM, and CTL0480 are ubiquitinated in the absence of Cdu1.

(A–C) Volcano plots (pairwise comparisons) of the relative abundance of human and Ct ubiquitinated peptides.(A) Mock infected HeLa cells versus HeLa cells infected with WT Ct (L2 434 Bu pBOMB) (24 …

Figure 1—source data 1

Excel file containing MaxQuant intensity values used to generate volcano plots in Figure 1A–C.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig1-data1-v2.zip
Figure 1—figure supplement 1
TargeTron mediated disruption of the L2 cdu1 ORF.

(A) Depiction of the cdu1 ORFs in WT L2 and cdu1::GII strains with corresponding diagnostic PCR amplicons. (B) PCR analysis of the disrupted cdu1 ORF in the cdu1::GII strain. *Amplification of cdu1

Figure 1—figure supplement 2
Generation of a cdu1 null strain in C. trachomatis (L2).

(A) Western blot analysis of protein lysates derived from HeLa cells infected with a Ct L2 434 Bu parental strain (L2) and an L2 cdu1::GII aadA (cdu1::GII) strain for 24 hr. Blots were probed with …

Figure 1—figure supplement 2—source data 1

Original files used for western blot analysis shown in Figure 1—figure supplement 2A (anti-Cdu1, anti-RpoB, and anti-α-tubulin).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig1-figsupp2-data1-v2.zip
Figure 1—figure supplement 2—source data 2

Files containing original scans of western blot analysis shown in Figure 1—figure supplement 2A (anti-Cdu1, anti-RpoB, and anti-α-Tubulin) with sample labels and highlighted bands.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig1-figsupp2-data2-v2.zip
Figure 1—figure supplement 3
Proteins co-precipitating (non ubiquitinated) with human and Ct proteins enriched by TUBE1 pulldowns.

(A) Volcano plots (pairwise comparisons) of human proteins (non-ubiquitinated) that co-precipitate with TUBE1-bound proteins in mock infected HeLa cells and HeLa cells infected with L2 or cdu1 null …

Figure 1—figure supplement 3—source data 1

Excel file containing MaxQuant intensity values used to generate volcano plots in panels A and B.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig1-figsupp3-data1-v2.zip
Figure 1—figure supplement 4
Pathway enrichment analysis of human and Ct proteins that co-precipitate (non ubiquitinated) with TUBE1-bound proteins.

(A) Metascape functional enrichment analysis of human co-precipitating proteins in mock infected HeLa cells. (B) Metascape functional enrichment analysis of human co-precipitating proteins in cdu1

Figure 1—figure supplement 4—source data 1

Excel file with Metascape compiled GO clusters and associated p-values for GO analysis of human co-precipitating proteins in mock-infected Hela cells (panel A).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig1-figsupp4-data1-v2.zip
Figure 1—figure supplement 4—source data 2

Excel file with Metascape compiled GO clusters and associated p-values for GO analysis of human co-precipitating proteins in cdu1 null infected HeLa cells (panel B).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig1-figsupp4-data2-v2.zip
Cdu1 associates with InaC, IpaM, and CTL0480.

(A) Co-localization of Cdu1(magenta) with endogenous InaC (green), IpaM (green), and ectopically expressed CTL0480-Flag (green) at the Ct (L2) inclusion membrane of HeLa cells infected for 24 hr. …

Figure 2—source data 1

Excel files with pixel intensity values for generating line scan profiles in Figure 2B.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data1-v2.zip
Figure 2—source data 2

Original western blot scans used to generate Figure 2D (anti-GFP [input], anti-Flag [input], anti-α-tubulin [input], anti-GFP [IP:GFP], and anti-Flag [IP:GFP]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data2-v2.zip
Figure 2—source data 3

Original western blot scans with labeled samples and highlighted bands for Figure 2D.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data3-v2.zip
Figure 2—source data 4

Original western blot scans used to generate Figure 2E (anti-GFP [input], anti-V5 [input], anti-α-tubulin [input], anti-GFP [IP:GFP], and anti-V5 [IP:GFP]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data4-v2.zip
Figure 2—source data 5

Original western blot scans with labeled samples and highlighted bands for Figure 2E.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data5-v2.zip
Figure 2—source data 6

Original western blot scans used to generate Figure 2F (anti-GFP [input], anti-V5 [input], anti-α-tubulin [input], anti-GFP [IP:GFP], and anti-V5 [IP:GFP]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data6-v2.zip
Figure 2—source data 7

Original western blot scans with labeled samples and highlighted bands for Figure 2F.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data7-v2.zip
Figure 2—source data 8

Original western blot scans used to generate Figure 2G (anti-GFP [input], anti-V5 [input], anti-α-tubulin [input], anti-GFP [IP:GFP], and anti-V5 [IP:GFP]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data8-v2.zip
Figure 2—source data 9

Original western blot scans with labeled samples and highlighted bands for Figure 2G.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig2-data9-v2.zip
Figure 3 with 1 supplement
Cdu1 stabilizes InaC, IpaM, and CTL0480.

(A) Western blot analysis of endogenous InaC in HeLa cells infected for 24, 36, and 48 hr with Wt Ct (L2 pBOMB), cdu1 null (cdu1::GII pBOMB), and inaC null (M407) strains. Ct Slc1 and human alpha …

Figure 3—source data 1

Original western blot scans used to generate Figure 3A (anti-InaC, anti-Slc1, and anti-α-tubulin).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-data1-v2.zip
Figure 3—source data 2

Original western blot scans with labeled samples and highlighted bands for Figure 3A.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-data2-v2.zip
Figure 3—source data 3

Excel file containing densitometry data for Figure 3B.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-data3-v2.zip
Figure 3—source data 4

Original western blot scans used to generate Figure 3C (anti-IpaM, anti-Slc1, and anti-α-tubulin).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-data4-v2.zip
Figure 3—source data 5

Original western blot scans with labeled samples and highlighted bands for Figure 3C.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-data5-v2.zip
Figure 3—source data 6

Excel file containing densitometry data for Figure 3D.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-data6-v2.zip
Figure 3—figure supplement 1
Quantification of CTL0480 at Ct inclusion membranes.

Quantification of CTL0480 localization at Ct inclusion membranes as shown in Figure 3E. CTL0480 fluorescent signal was used to determine the percent of inclusions displaying CTL0480 at the inclusion …

Figure 3—figure supplement 1—source data 1

Excel files with numerical data for quantifying CTL0480 localization to WT and cdu1::GII inclusions.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig3-figsupp1-data1-v2.zip
The acetylase activity of Cdu1 is required to stabilize Cdu1, InaC, and IpaM.

(A) Western blot analysis of endogenous InaC and Cdu1-Flag catalytic variants expressed from a plasmid (pBOMB). HeLa cells were infected for 36 hr with WT Ct (L2 434 Bu pBOMB), a cdu1 null strain (cd…

Figure 4—source data 1

Original western blot scans used to generate Figure 4A (anti-InaC, anti-Flag, anti-Slc1, and anti-α-tubulin).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data1-v2.zip
Figure 4—source data 2

Original western blot scans with labeled samples and highlighted bands for Figure 4A.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data2-v2.zip
Figure 4—source data 3

Original western blot scans used to generate Figure 4B (anti-IpaM, anti-Flag, anti-Slc1, and anti-α-tubulin).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data3-v2.zip
Figure 4—source data 4

Original western blot scans with labeled samples and highlighted bands for Figure 4B.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data4-v2.zip
Figure 4—source data 5

Original western blot scans used to generate Figure 4C (anti-Flag, anti-Slc1, and anti-α-tubulin).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data5-v2.zip
Figure 4—source data 6

Original western blot scans with labeled samples and highlighted bands for Figure 4C.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data6-v2.zip
Figure 4—source data 7

Original western blot scans used to generate Figure 4D (anti-Flag [input], anti-Slc1 [input], anti-α-tubulin [input], anti-Flag [IP:Flag], and anti-lys48 pUb [IP:Flag]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data7-v2.zip
Figure 4—source data 8

Original western blot scans with labeled samples and highlighted bands for Figure 4D.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data8-v2.zip
Figure 4—source data 9

Original western blot scans used to generate Figure 4E (anti-IncA [input], anti-InaC [input], anti-IpaM [input], anti-InaC [IP:Acetylated lysines], anti-IpaM [IP:Acetylated lysines], and anti-IncA [IP:Acetylated lysines]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data9-v2.zip
Figure 4—source data 10

Original western blot scans with labeled samples and highlighted bands for Figure 4E.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data10-v2.zip
Figure 4—source data 11

Original western blot scans used to generate Figure 4F (anti-IncA [input], anti-Flag [input], and anti-Flag [IP:Acetylated lysines]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data11-v2.zip
Figure 4—source data 12

Original western blot scans with labeled samples and highlighted bands for Figure 4F.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data12-v2.zip
Figure 4—source data 13

Original western blot scans used to generate Figure 4G (anti-IncA [input], anti-Flag [input], and anti-Flag [IP:Acetylated lysines]).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data13-v2.zip
Figure 4—source data 14

Original western blot scans with labeled samples and highlighted bands for Figure 4G.

https://cdn.elifesciences.org/articles/87386/elife-87386-fig4-data14-v2.zip
Figure 5 with 1 supplement
The DUB activity of Cdu1 is not required for blocking the ubiquitination of inclusion membranes and Cdu1 is not required for protection against IFNγ mediated cellular immunity.

(A) Representative images of Ct inclusions decorated with ubiquitin during infection of HeLa cells with a cdu1::GII strain for 24 hr. Representative images of infected HeLa cells used for …

Figure 5—source data 1

Excel file with numerical data for quantifying ubiquitinated inclusions in HeLa cells infected with WT CT and cdu1::GII strains, and cdu1::GII strains expressing Cdu1 C345A, I225A, and K268E variants (Figure 5B).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig5-data1-v2.zip
Figure 5—source data 2

Excel files with numerical data for quantifying the number of ubiquitinated inclusions in HeLa cells infected with cdu1::GII and incA null strains, and cdu1::GII strains expressing Cdu1 variants that are ubiquitinated at inclusion junctions in co-infected HeLa cells (Figure 5D).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig5-data2-v2.zip
Figure 5—source data 3

Excel file containing numerical data for quantifying the number of inclusions in IFN-γ-primed A549 cells infected with WT CT, garD::GII, and cdu1::GII strains (Figure 5E).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig5-data3-v2.zip
Figure 5—source data 4

Excel file containing numerical data for quantifying the number of RNF213-positive inclusions in IFN-γ-primed A549 cells infected with WT CT, garD::GII, and cdu1::GII strains (Figure 5G).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig5-data4-v2.zip
Figure 5—figure supplement 1
The Acetylase activity of Cdu1 is the predominant activity of Cdu1 responsible for protecting Ct inclusions from ubiquitination.

(A) Representative images of Ct inclusions (green, Cap1) decorated with Ubiquitin (magenta, FK2 antibody) in HeLa cells infected for 24 hr. Strains used: WT Ct (L2 434 Bu), cdu1::GII pBOMB MCI, cdu1:…

Figure 6 with 2 supplements
Cdu1 is required for assembly of F-actin, Golgi ministack repositioning, and MYPT1 recruitment to the inclusion.

(A) Examples of representative images of F-actin (arrowheads) (green, Alexa Fluor Phalloidin) assembled around the Ct inclusion (magenta, anti Cdu1 and Cap1 staining) in HeLa cells infected for 40 …

Figure 6—source data 1

Excel file containing numerical data for quantifying the number of inclusions surrounded by filamentous actin in HeLa cells infected with WT CT, inaC null, inaC null complemented with InaC, cdu1::GII, and cdu1::GII strains expressing Cdu1, Cdu1 C345A, I225A, and K268E variants (Figure 6B).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig6-data1-v2.zip
Figure 6—source data 2

Excel files containing numerical data for quantifying the number of inclusions surrounded by dispersed Golgi mini stacks in HeLa cells infected with WT CT, inaC null, inaC null complemented with InaC, cdu1::GII, and cdu1::GII strains expressing Cdu1, Cdu1 C345A, I225A, and K268E variants (Figure 6D).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig6-data2-v2.zip
Figure 6—source data 3

Excel files with numerical data for quantifying the localization of MYPT1 to WT and cdu1::GII inclusions (Figure 6F).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig6-data3-v2.zip
Figure 6—figure supplement 1
The DUB activity of Cdu1 is not required for assembly of F-actin around the Ct inclusion.

Representative images of F-actin (arrowheads) (green, Alexa Fluor Phalloidin) assembled around the Ct inclusion (magenta, antiCdu1 and Cap1 staining) in HeLa cells infected for 40 hr. Strains used: …

Figure 6—figure supplement 2
The DUB activity of Cdu1 is not required for Golgi ministack repositioning around the Ct inclusion.

Representative images of Golgi (anti-GM130 staining, magenta) around Ct inclusions in HeLa cells infected for 24 hr. Strains used: WT L2 (Rif-R 434 Bu, parent of M407), M407 (inaC null strain) …

Figure 7 with 1 supplement
Cdu1, InaC, and IpaM are required for optimal extrusion of Ct inclusions from HeLa cells.

(A) Representative images of extrusions isolated from HeLa cell monolayers infected with Ct strains for 52 hr. Scale bar: 200 μm (B) Quantification of the number of extruded inclusions produced by …

Figure 7—source data 1

Excel files containing numerical data for quantifying the number of extrusions produced and the size of extrusions in WT CT, cdu1::GII strains, and cdu1::GII strains expressing Cdu1, I225A, and K268E variants from infected HeLa cells (Figure 7B and C).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig7-data1-v2.zip
Figure 7—figure supplement 1
The number of inclusions and the size of inclusions in cdu1 null, inaC null, ipaM null, and ctl0480 null strains are similar across each strain.

(A) Representative images of inclusions in infected HeLa cell monolayers at 48 hpi. Scale bar: 200 μm (B) Quantification of the number of inclusions in infected HeLa cell monolayers. To determine …

Figure 7—figure supplement 1—source data 1

Excel files with numerical data for quantifying the number of inclusions produced and inclusion size in WT CT, cdu1::GII strains, and cdu1::GII strains expressing Cdu1, I225A, and K268E variants in infected HeLa cells (panels B and C).

https://cdn.elifesciences.org/articles/87386/elife-87386-fig7-figsupp1-data1-v2.zip
A model for acetylation mediated protection of the Inc proteins InaC, IpaM, and Ctl0480 from degradation.

The cellular Ub machinery targets C. trachomatis effectors, including the Inc proteins InaC, IpaM, and CTL0480 for ubiquitination and subsequent protein degradation. C. trachomatis counters such …

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene
(Chlamydia trachomatis L2 434 Bu)
cdu1BV-BRC
(Bacterial and Viral Bioinformatics resource center);
Refseq
(NCBI Reference Sequence Database)
fig|471472.4.peg.264
(BV-BRC)
CTL0247 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
inaCBV-BRC;
Refseq
fig|471472.4.peg.199 (BV-BRC)
CTL0184 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
ipaMBV-BRC;
Refseq
fig|471472.4.peg.511 (BV-BRC)
CTL0476 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
CTL0480BV-BRC;
Refseq
fig|471472.4.peg.516 (BV-BRC)
CTL0480 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
cpoSBV-BRC;
Refseq
fig|471472.4.peg.517
(BV-BRC)
CTL0481 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
incABV-BRC;
Refseq
fig|471472.4.peg.406
(BV-BRC)
CTL0374 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
slc1BV-BRC;
Refseq
fig|471472.4.peg.323
(BV-BRC)
CTL0299 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
rpoBBV-BRC;
Refseq
fig|471472.4.peg.608
(BV-BRC)
CTL0567 (Refseq)
Gene
(Chlamydia trachomatis L2 434 Bu)
garDBV-BRC;
Refseq
fig|471472.4.peg.421
(BV-BRC)
CTL0390 (Refseq)
Gene
(Homo sapiens)
MYPT1NCBIPPP1R12A
Cell line
(Homo sapiens)
HelaATCCCat# CCL-2
RRID:CVCL_0030
Cell line (Cercopithecus aethiops)VeroATCCCat# CCL-81
RRID:CVCL_0059
Cell line
(Homo sapiens)
HEK 293TATCCCat# CRL-3216
RRID:CVCL_0063
Cell line
(Homo sapiens)
A549ATCCCat# CCL-185
RRID:CVCL_0023
Transfected construct (Chlamydia trachomatis L2 43 Bu)pOPIN-GFP_Cdu1 FL (aa 1–401)Jonathan Pruneda (Oregon Health and Science University)N/AUsed for Cdu1 co-immunoprecipitations in transfected cells
Transfected construct (Chlamydia trachomatis L2 43 Bu)pOPIN-GFP_Cdu1 TMD- (aa 71–401)Jonathan Pruneda (Oregon Health and Science University)N/AUsed for Cdu1 co-immunoprecipitations in transfected cells
Transfected construct (Chlamydia trachomatis L2 43 Bu)pOPIN-GFP_Cdu1 CD- (aa 1–130)Jonathan Pruneda (Oregon Health and Science University)N/AUsed for Cdu1 co-immunoprecipitations in transfected cells
Transfected construct (Chlamydia trachomatis L2 43 Bu)pCDNA-DEST53 (w/o GFP)_InaC (CT813)–3XFLAGThis paperN/AConstruct for showing Cdu1-InaC co-IP in transfected cells
Transfected construct (Chlamydia trachomatis L2 43 Bu)pcDNA3.1/nV5-DEST_IpaMThis paperN/AConstruct for showing Cdu1-IpaM co-IP in transfected cells
Transfected construct (Chlamydia trachomatis L2 43 Bu)pcDNA3.1/nV5-DEST_CTL0480This paperN/AConstruct for showing Cdu1-CTL0480 co-IP in transfected cells
Transfected construct (Chlamydia trachomatis L2 43 Bu)pcDNA3.1/nV5-DEST_CpoSThis paperN/AConstruct for showing lack of Cdu1-Cpos co-IP in transfected cells
Biological sample (Chlamydia trachomatis L2 434 Bu)Chlamydia trachomatis LGV biovar L2 434 Bu (L2)Richard Stephens (UC Berkeley)N/AReference Chlamydia trachomatis (L2) strain
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 pBOMB-MCI
(Parent: LGV L2 434 Bu)
This paperN/AL2 strain transformed with empty expression plasmid
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 pBOMB-MCI_CTL0480-3XFlag
(Parent: LGV L2 434 Bu)
This paperN/AL2 strain transformed with plasmid expressing CTL0480-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 pBOMB-MCI_IpaM-3XFlag
(Parent: LGV L2 434 Bu)
This paperN/AL2 strain transformed with plasmid expressing IpaM-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 pBOMB-MCI_Cdu1-3XFlag
(Parent: LGV L2 434 Bu)
This paperN/AL2 strain transformed with plasmid expressing Cdu1-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 pBOMB-MCI_Cdu1C345A-3XFlag
(Parent: LGV L2 434 Bu)
This paperN/AL2 strain transformed with plasmid expressing Cdu1C345A –3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 pBOMB-MCI_Cdu1K268E-3XFlag
(Parent: LGV L2 434 Bu)
This paperN/AL2 strain transformed with plasmid expressing Cdu1K268E –3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 cdu1::GII aadA
(Parent: LGV L2 434 Bu)
This paperN/AL2 cdu1 null strain (SpecR)
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 cdu1::GII aadA pBOMB-MCI
(Parent: L2 cdu1::GII aadA)
This paperN/AL2 cdu1 null strain transformed with empty expression plasmid
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 cdu1::GII aadA pBOMB-MCI_Cdu1-3XFlag
(Parent: L2 cdu1::GII aadA)
This paperN/AL2 cdu1 null strain transformed with plasmid expressing WT Cdu1-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 cdu1::GII aadA pBOMB-MCI_Cdu1C345A-3XFlag
(Parent: L2 cdu1::GII aadA)
This paperN/AL2 cdu1 null strain transformed with plasmid expressing WT Cdu1C345A-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 cdu1::GII aadA pBOMB-MCI_Cdu1I225A-3XFlag
(Parent: L2 cdu1::GII aadA)
This paperN/AL2 cdu1 null strain transformed with plasmid expressing WT Cdu1I225A-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 cdu1::GII aadA pBOMB-MCI_Cdu1K268E-3XFlag
(Parent: L2 cdu1::GII aadA)
This paperN/AL2 cdu1 null strain transformed with plasmid expressing WT Cdu1K268E-3XFlag
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 Rif-R
(Parent: L2 434 Bu)
PMID:22232666N/ARifampin resistant L2 strain (L2 434 Bu)
Biological sample (Chlamydia trachomatis L2 434 Bu)M407 (inaC C307T, InaC Q103*)
(Parent: L2 Rif-R)
PMID:25920978N/AL2 strain bearing a nonsense mutation in inaC (inaC null srain)
Biological sample (Chlamydia trachomatis L2 434 Bu)M407 p2TK2
(Parent: M407)
PMID:25920978N/AL2 inaC null strain transformed with empty expression plasmid
Biological sample (Chlamydia trachomatis L2 434 Bu)M407 p2TK2_InaC
(Parent: M407)
PMID:25920978N/AL2 inaC null strain transformed with plasmid expressing WT InaC (untagged)
Biological sample (Chlamydia trachomatis L2 434 Bu)M407 p2TK2_InaC-3X Flag
(Parent: M407)
This paperN/AL2 inaC null strain transformed with plasmid expressing WT InaC-3X Flag
Biological sample (Chlamydia trachomatis L2 434 Bu)inaC::GII bla
(Parent: L2 434 Bu)
PMID:28465429N/AL2 inaC null strain (PenicillinR)
Biological sample (Chlamydia trachomatis L2 434 Bu)ipaM::GII cat
(Parent: L2 434 Bu)
PMID:37530528N/AL2 ipaM null strain (ChloramphenicolR)
Biological sample (Chlamydia trachomatis L2 434 Bu)ctl0480::GII aadA
(Parent: L2 434 Bu)
PMID:30555802N/AL2 ctl0480 null strain (SpecR)
Biological sample (Chlamydia trachomatis L2 434 Bu)M923 (incA C589T, IncA R197*)
(Parent: L2 Rif-R)
PMID:25920978N/AL2 strain bearing a nonsense mutation in incA (incA null srain)
Biological sample (Chlamydia trachomatis L2 434 Bu)M923 pBOMB-MCl
(Parent: L2 M923)
PMID:28041929N/AL2 incA null strain transformed with empty expression plasmid
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 434 Bu
(Parent of L2 garD::GII)
PMID:36084633N/AWild type L2 parent of garD null strain
Biological sample (Chlamydia trachomatis L2 434 Bu)L2 ctl0390::GII aadA (garD::GII)PMID:36084633N/AL2 garD null strain
(SpecR)
AntibodyCT L2 Cdu1 (a.a 71–401)
Rabbit polyclonal
This paperN/ADilution IF: 1:100
Dilution WB 1:500
Antibody raised against L2 Cdu1
AntibodyCT Cap1
Rabbit polyclonal
PMID:26981769N/ADilution IF: 1:250
AntibodyCT CT813 (InaC)
(D/UW-3/CX)
Mouse monoclonal
PMID:16861671N/ADilution IF: 1:100
AntibodyCT CTL0480
Rabbit polyclonal
PMID:23727243N/ADilution IF: 1:100
AntibodyCT IncA
Mouse monoclonal
Dan Rockey Oregon State Univ. CorvallisN/ADilution IF: 1:100
AntibodyCT IpaM
Mouse monoclonal
12ES IgG1
PMID:11207561N/ADilution IF: 1:100
Dilution WB 1:200
See Supplementary file 9
AntibodyCT RpoB
Rabbit polyclonal
Ming Tang
(UC Irvine)
N/ADilution WB 1:100
See Supplementary file 9
AntibodyCT Slc1
Rabbit polyclonal
PMID:24586162N/ADilution WB 1:400
See Supplementary file 9
AntibodyHs Acetylated lysine
Rabbit polyclonal
Cell signallingCat# 9441
RRID:AB_331805
Dilution WB 1:4000
See Supplementary file 9
AntibodyHs Alpha tubulin clone B-5-1-2
Mouse monoclonal
Sigma-AldrichCat# T5168
RRID:AB_477579
Dilution WB 1:500
See Supplementary file 9
AntibodyFlag epitope
Mouse monoclonal
Sigma-AldrichCat# F3165
RRID:AB_259529
Dilution WB 1:1000
See Supplementary file 9
AntibodyFlag epitope
Mouse monoclonal
Sigma-AldrichCat# F1804
RRID:AB_262044
Dilution IF: 1:250
AntibodyHs GM130
Mouse monoclonal
BD BiosciencesCat# 610822
RRID:AB_398141
Dilution IF: 1:1000
AntibodyLys48-linkage specific polyubiquitin (D9D5)
Rabbit monoclonal
Cell signallingCat# 8081
RRID:AB_10859893
Dilution WB 1:1000
See Supplementary file 9
AntibodyHs MYPT1
Rabbit polyclonal
US BiologicalCat# M9925-01C
RRID:AB_2927397
Dilution IF: 1:100
AntibodyHs Ubiquitin
(P4D1)
Mouse monoclonal
Cell signallingCat# 3936
RRID:AB_331292
Dilution IF: 1:50
AntibodyV5 epitope
Mouse monoclonal
AbcamCat# ab27671
RRID:AB_471093
Dilution WB 1:5000
See Supplementary file 9
AntibodyHs RNF213
Rabbit
Polyclonal
SigmaCat# HPA003347
RRID:AB_1079204
Dilution IF: 1:1000
AntibodyRabbit IgG-HRP
Goat polyclonal
ThermoFisherCat# 31460
RRID:AB_228341
Dilution WB 1:1000
See Supplementary file 9
AntibodyMouse IgG-HRP
Goat polyclonal
ThermoFisherCat# 31430
RRID:AB_228307
Dilution WB 1:1000
See Supplementary file 9
AntibodyRabbit IgG-A488
Goat polyclonal
ThermoFisherCat# A-11008
RRID:AB_143165
Dilution IF: 1:1000
AntibodyRabbit IgG-A647
Goat polyclonal
ThermoFisherCat# A-21244
RRID:AB_2535812
Dilution IF: 1:1000
AntibodyMouse IgG-A488
Goat polyclonal
ThermoFisherCat# A-11001
RRID:AB_2534069
Dilution IF: 1:1000
AntibodyMouse IgG-A647
Goat polyclonal
ThermoFisherCat# A-21235
RRID:AB_2535804
Dilution IF: 1:1000
Sequence-based reagentSee Supplementary file 10This paperPrimers used in this study
Peptide, recombinant protein3xFLAG peptideAPExBIOCat# A6001Peptide for eluting Flag immunoprecipitated proteins
Peptide, recombinant proteinRecombinant human interferon gamma (IFNγ)MilliporeCat# IF005For inducing Type II interferon responses in cell cultures
Peptide, recombinant proteinLGV L2 434 Bu Cdu1 recombinant proteinJonathan Pruneda (Oregon Health and Science University)N/ARecombinant Cdu1 protein used to generate Rabbit polyclonal antibodies against Cdu1
Commercial assay or kitTargeTron gene knockout systemSigma-AldrichCat# TA0100Kit for generating cdu1::GII null strain
Chemical compound, drugPR-619 (DUB inhibitor)Sigma-AldrichCat# SML0430Used during TUBE affinity enrichment
Chemical compound, drugMG132Sigma-AldrichCat# 474791Proteasome inhibitor
Chemical compound, drugTUBE-1LifeSensorsCat# UM401MPan-polyubiquitination affinity capture reagent
Chemical compound, drugActi-stain 488 (Phalloidin 488)Cytoskeleton Inc.Cat# PHDG1Reagent for visualizing Actin by IF
Chemical compound, drugChromoTek GFP-Trap AgaroseProteintechCat# gtaAgarose for immunoprecipitating GFP tagged proteins
Chemical compound, drugProtein A/G PLUS-AgaroseSanta Cruz BiotechnologyCat# sc-2203Agarose for immunoprecipitations
SoftwareTargetronicsTargetronics, LLC; https://www.targetrons.com/Algorithm for generating TargeTron homing sequences
SoftwareProteome Discoverer 2.3Thermo Fisher;
https://www.thermofisher.com/in/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html
Proteomics software
SoftwareMascot softwareMatrix Science;
https://www.matrixscience.com
Proteomics software
SoftwareMaxQuant 1.6.2.3https://www.maxquant.orgProteomics software
SoftwareScaffold PTMProteome Software;
https://www.proteomesoftware.com/products/scaffold-ptm
Software for viewing proteomics data
SoftwareVolcaNoseRPMID:33239692;
https://huygens.science.uva.nl/VolcaNoseR/
Online software for generating volcano plots
SoftwareMetascapePMID:30944313;
https://metascape.org/gp/index.htm#/main/step1
Online program for Gene Ontology clustering
SoftwareDAVID Bioinformatic ResourcesPMID:19033363;
PMID:19131956
https://david.ncifcrf.gov/tools.jsp
Online program for Gene Ontology clustering
SoftwareImage JPMID:22930834;
https://imagej.nih.gov/ij/
Software for image viewing and processing
SoftwareNEBaseChangerNew England Biolabs;
https://nebasechanger.neb.com
Cloning website
SoftwarePrism 9GraphPad;
https://www.graphpad.com/updates/prism-900-release-notes
Software for statistical analysis
SoftwareHCS Studio Cell Analysis SoftwareThermo Fischer ScientificCat# CX51110Software for high content image analysis

Additional files

Supplementary file 1

TUBE1 co-precipitating proteins mass spectrometry data for all biological replicates.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp1-v2.xlsx
Supplementary file 2

Numerical data used to generate all volcano plots.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp2-v2.xlsx
Supplementary file 3

Numerical mass spectrometry data used to identify high confidence TUBE1 human co-precipitating proteins.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp3-v2.xlsx
Supplementary file 4

Numerical data for Gene Ontology (GO) classification of TUBE1 human co-precipitating proteins.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp4-v2.xlsx
Supplementary file 5

Numerical mass spectrometry data used to identify high confidence TUBE1 Chlamydia co-precipitating proteins.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp5-v2.xlsx
Supplementary file 6

Human ubiquitinated peptides mass spectrometry data.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp6-v2.xlsx
Supplementary file 7

Chlamydia ubiquitinated peptides mass spectrometry data.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp7-v2.xlsx
Supplementary file 8

Numerical mass spectrometry data used tp identify high confidence ubiquitinated proteins.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp8-v2.xlsx
Supplementary file 9

Antibodies used in this study.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp9-v2.docx
Supplementary file 10

Primer sequences used in this study.

https://cdn.elifesciences.org/articles/87386/elife-87386-supp10-v2.xlsx
MDAR checklist
https://cdn.elifesciences.org/articles/87386/elife-87386-mdarchecklist1-v2.pdf

Download links