Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing

  1. Aixin Zhang
  2. Lei Jin
  3. Shenqin Yao
  4. Makoto Matsuyama
  5. Cindy TJ van Velthoven
  6. Heather Anne Sullivan
  7. Na Sun
  8. Manolis Kellis
  9. Bosiljka Tasic
  10. Ian Wickersham  Is a corresponding author
  11. Xiaoyin Chen  Is a corresponding author
  1. Allen Institute for Brain Science, United States
  2. McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States
  3. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Broad Institute of MIT and Harvard, United States
  4. Broad Institute of MIT and Harvard, United States
5 figures, 4 tables and 4 additional files

Figures

Models of multiplexed retrograde labeling and monosynaptic tracing using barcoded rabies virus.

(A) In multiplexed retrograde labeling, rabies viruses carrying different barcodes are injected into different brain regions, and retrogradely labeled neurons can be distinguished based on the …

Figure 2 with 3 supplements
High-quality cell typing of rabies virus-barcoded neurons using single-cell RNA-seq.

(A) Illustration of the design of barcoded rabies virus libraries. (B) Barcode distribution in the CCS and non-CCS libraries. The y axis indicates the count of barcodes, which are sorted in …

Figure 2—figure supplement 1
Quality control of scRNA-seq in rabies virus-infected cells.

(A) Quality control plots of scRNA-seq for two animals used in multiplexed retrograde labeling experiments (591123 and 620569) and four animals used in barcoded transsynaptic labeling experiments …

Figure 2—figure supplement 2
The expression of immune response-related genes in rabies virus-infected cells.

(A) Volcano plots showing differential expression of genes in clusters with more than 10 rabies infected cells across all six animals. X axes indicate and y axes indicate . Red/blue dots indicate …

Figure 2—figure supplement 3
The expression of activity-related genes in rabies virus-infected cells and uninfected cells from Tasic et al., 2018.

Dot size indicates the proportion of cells with nonzero marker expression, and colors indicate relative gene expression levels scaled per row.

In situ sequencing identifies transcriptomic types of neurons infected with barcoded rabies virus.

(A) Illustration of probe designs and amplification approach for in situ sequencing of rabies barcodes. (B) Illustration of the experiments. The two libraries were injected in VISal and RSP/SC, and …

Multiplexed retrograde labeling recapitulates known cortical projections.

(A) Histograms showing the distribution of the minimum Hamming distance between each barcode and all other barcodes for barcodes in the VISal library (blue), the SC/RSP library (red), and random …

Figure 5 with 3 supplements
Multiplexed transsynaptic labeling by sequencing rabies barcodes in situ.

(A) Five possible types of barcode-sharing networks in a barcoded transsynaptic tracing experiment using rabies virus. Whether each network is compatible with monosynaptic tracing and/or mapping …

Figure 5—figure supplement 1
scRNA-seq is insufficient to resolve connectivity among transsynaptically labeled neurons using barcoded rabies virus.

(A) Outline of the trans-synaptic labeling experiment using scRNA-seq. In Cre-expressing animals, we sequentially injected AV helpers (day 1) and barcoded rabies virus (day 14), then dissected VISp …

Figure 5—figure supplement 2
Barcoded transsynaptic labeling resolved by in situ sequencing.

(A) For barcoded cells with the indicated barcode complexity (x axis, left) or barcode counts per cell (x axis, right), two proofreaders manually determined whether each cell is a real barcoded cell …

Figure 5—figure supplement 3
Presynaptic cells and source cells in all single-source networks.

In each plot, a source cell (red cross) and presynaptic cells (dots) that shared the same barcodes were plotted. Colors of dots indicate transcriptomic types of presynaptic neurons. Transcriptomic …

Tables

Table 1
Number of cells in the scRNA-seq-based transsynaptic tracing and retrograde tracing experiments.
Animal IDN cellsAfter QC (total reads, genes detected, and GC content)Mapping confidence > 0.7Mapping correlation > 0.6
Transsynaptic tracing59112194807775
61830880716964
61830960464542
62058861555351
Retrograde tracing59112348343021
62056948414033
Total443371354295
Table 2
The numbers of barcoded cells that belonged to each type of network in the in situ sequencing-based trans-synaptic tracing experiment.
TotalSingle-sourceDouble-labeledConnected-sourceNo-sourceLost-source
Source cells and barcodes120 cells, 59 barcodes, 126 cell-barcode pairs42 cells, 43 barcodes, 43 cell-barcode pairsEst. 33 cell-barcode pairsEst. 50 cell-barcode pairs00
presynaptic cells2590 cells
(=381 + 979–6+677 + 566–7)
381 cells979 cells (6 cells also contained a single-source barcode)677 cells (7 cells also had a lost-source barcode)566 cells (7 cells also had a no-source barcode)
Barcodes in presynaptic cells535 barcodes
(=31 + 16+427 + 61)
31 barcodes16 barcodes42761
Filtered out cells204 cells (with one G transcript and/or low-quality source cells)NANANANANA
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)C57BL/6 J (See Supplementary file 1 for details) Jackson Laboratory000664
Recombinant DNA reagentpRVdG-4mCherry (plasmid)Weible et al., 2010Addgene_52488
Recombinant DNA reagentRabV CVS-N2c(deltaG)-mCherry (plasmid)Reardon et al., 2016Addgene_73464
Recombinant DNA reagentpCAG-B19N (plasmid)Chatterjee et al., 2018Addgene_59924
Recombinant DNA reagentpCAG-B19P (plasmid)Chatterjee et al., 2018Addgene_59925
Recombinant DNA reagentpCAG-B19G (plasmid)Chatterjee et al., 2018Addgene_59921
Recombinant DNA reagentpCAG-B19L (plasmid)Chatterjee et al., 2018Addgene_59922
Recombinant DNA reagentpCAG-T7pol (plasmid)Chatterjee et al., 2018Addgene_59926
Recombinant DNA reagentpCAG-N2cN (plasmid) This paperAddgene_100801Used in rabies virus rescue (see Materials and methods M5)
Recombinant DNA reagentpCAG N2cP (plasmid) This paperAddgene_100808Used in rabies virus rescue (see Materials and methods M5)
Recombinant DNA reagentpCAG-N2cG (plasmid) This paperAddgene_100811Used in rabies virus rescue (see Materials and methods M5)
Recombinant DNA reagentpCAG-N2cL (plasmid) This paperAddgene_100812Used in rabies virus rescue (see Materials and methods M5)
Sequence-based reagentSee Supplementary file 3 for details Integrated DNA TechnologiesNA
Commercial assay or kitMiSeq Reagent Nano Kit v2 (300-cycles) IlluminaMS-103–1001
Commercial assay or kitRevertAid Reverse Transcriptase Thermo FisherEP0442
Commercial assay or kitRiboLock RNase Inhibitor Thermo FisherEO0384
Commercial assay or kitPhusion High-Fidelity DNA Polymerase Thermo FisherF530L
Commercial assay or kitAmpligase Thermostable DNA Ligase Biosearch TechnologiesA0110K
Commercial assay or kitRNase H QiagenY9220L
Commercial assay or kitPhi29 dna polymerase Thermo FisherEP0094
Chemical compound, drugIodoacetamide, No-Weigh Thermo FisherA39271
Chemical compound, drugBis-PEG9-NHS ester BroadPharmBP-21504
Software, algorithmMATLAB MathworksRRID: SCR_001622
Software, algorithmR R Project for Statistical ComputingRRID: SCR_001905
Software, algorithmCustom scripts for data analysis/processing This paperSee M15. Data and Code availability for links
OtherAAV2-retro-syn-mCre (virus)Jin et al., 2023bAddgene_178515 (genome plasmid)Helper virus for barcoded rabies virus (see Figure 5B)
OtherAAV1-syn-FLEX-splitTVA-EGFP-tTA (virus)Liu et al., 2017Addgene_100798 (genome plasmid)Helper virus for barcoded rabies virus (see Figure 5B)
OtherAAV1-TREtight-mTagBFP2-B19G (virus)Liu et al., 2017Addgene_100799 (genome plasmid)Helper virus for barcoded rabies virus (see Figure 5B)
OtherAAV1-TREtight-mTagBFP2-N2cG (virus) This paperAddgene_192838 (genome plasmid)Helper virus for CVS-N2c strain of rabies virus (see Figure 5—figure supplement 1)
OtherN2c∆G-4mCherry_CCS2_20nt_HM(EnvA) (virus) This paperBarcoded rabies virus library used for monosynaptic tracing with scRNA-seq (see Materials and methods M5)
OtherRV∆G-4mCherry_CCS2_20nt_HM(EnvA) (virus) This paperBarcoded rabies virus library used for monosynaptic tracing with BARseq (see Materials and methods M5)
OtherRV∆G-4mCherry_CCS2_20nt_HM(B19G) (virus) This paperBarcoded rabies virus library used for retrograde labeling (see Materials and methods M5)
OtherRV∆G-4mCherry_20-mer barcode(B19G) (virus) This paperBarcoded rabies virus library used for retrograde labeling (see Materials and methods M5)
Table 3
List of filters and lasers used for in situ sequencing.
Filters
Main dichroicFilter names
D1FF421/491/567/659/776-Di01 (Semrock)
D2ZT405/514/635rpc
D3FF421/491/572-Di01−25x36(Semrock)
Emission filters
E1FF01-441/511/593/684/817(Semrock)
E2FF01-565/24(Semrock)
E4FF01-676/29(Semrock)
E5FF01-775/140(Semrock)
E769,401 m
E8ZET532/640 m
Imaging settings
Sequencing cycles
ChannelFilter combinationslaser
GD2/E2520
TD1/E1546
AD2/E4638
CD2/E5638
DICD2/E5DIA
Hybridization cycle
GFPD3/E7477
YFPD2/E2520
TxRedD3/E7546
Cy5D2/E8638
DAPID1/E7405
DICD3/E7DIA

Additional files

Download links