Conditional deletion of neurexins dysregulates neurotransmission from dopamine neurons

  1. Charles Ducrot
  2. Gregory de Carvalho
  3. Benoit Delignat-Lavaud
  4. Constantin VL Delmas
  5. Priyabrata Halder
  6. Nicolas Giguère
  7. Consiglia Pacelli
  8. Sriparna Mukherjee
  9. Marie-Josée Bourque
  10. Martin Parent
  11. LuLu Y Chen  Is a corresponding author
  12. Louis-Eric Trudeau  Is a corresponding author
  1. Université de Montréal, Canada
  2. University of California, Irvine, United States
  3. University of Foggia, Italy
  4. Université Laval, Canada

Abstract

Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns) is unexplored. Here we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::Nrxns KO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::Nrxns KO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.

Data availability

All primary data are provided in the source data files accompanying the manuscript.

Article and author information

Author details

  1. Charles Ducrot

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Gregory de Carvalho

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9179-7697
  3. Benoit Delignat-Lavaud

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Constantin VL Delmas

    Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Priyabrata Halder

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicolas Giguère

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Consiglia Pacelli

    Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4915-5823
  8. Sriparna Mukherjee

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Marie-Josée Bourque

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Parent

    Department of Psychiatry and Neurosciences, Université Laval, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. LuLu Y Chen

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    For correspondence
    chenly@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8873-3481
  12. Louis-Eric Trudeau

    Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
    For correspondence
    louis-eric.trudeau@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4684-1377

Funding

Canadian Institutes of Health Research (MOP106556)

  • Louis-Eric Trudeau

University of California Irvine, School of Medicine (GF15247)

  • LuLu Y Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were conducted in accordance with the Guide to care and use of Experimental Animals of the Canadian Council on Animal Care. The experimental protocols (#21-113) were approved by the animal ethics committees of the Université de Montréal (CDEA).

Copyright

© 2023, Ducrot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,272
    views
  • 256
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles Ducrot
  2. Gregory de Carvalho
  3. Benoit Delignat-Lavaud
  4. Constantin VL Delmas
  5. Priyabrata Halder
  6. Nicolas Giguère
  7. Consiglia Pacelli
  8. Sriparna Mukherjee
  9. Marie-Josée Bourque
  10. Martin Parent
  11. LuLu Y Chen
  12. Louis-Eric Trudeau
(2023)
Conditional deletion of neurexins dysregulates neurotransmission from dopamine neurons
eLife 12:e87902.
https://doi.org/10.7554/eLife.87902

Share this article

https://doi.org/10.7554/eLife.87902

Further reading

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.