Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3b, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3b activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3b activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3b. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Data availability
Materials and data availability statement has been provided in the text: Data are available via Dryad (https://doi.org/10.5061/dryad.sn02v6x88). New reagents are available from the senior authors.
-
Data from: Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiologyDryad Digital Repository, doi:10.5061/dryad.sn02v6x88.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (NS112770)
- Anna Castano
- Margaux Silvestre
- Carrow I Wells
- Jennifer L Sanderson
- Carla A Ferrer
- Han Wee Ong
- Yi Lang
- William Richardson
- Josie A Silvaroli
- Frances M Bashore
- Jeffery L Smith
- Isabelle M Genereux
- Kelvin Dempster
- David H Drewry
- Navlot S Pabla
- Alex N Bullock
- Tim A Benke
- Sila Ultanir
- Alison D Axtman
LouLou Foundation (11015)
- Margaux Silvestre
Children's Hospital Colorado Foundation (Ponzio Family Chair in Neuroscience Research)
- Anna Castano
- Jennifer L Sanderson
- Tim A Benke
Structural Genomics Consortium
- Carrow I Wells
- Carla A Ferrer
- Han Wee Ong
- Yi Lang
- Frances M Bashore
- Jeffery L Smith
- Isabelle M Genereux
- David H Drewry
- Alison D Axtman
NC Biotechnology Center Institutional Support Grant (2018-IDG-1030)
- David H Drewry
- Alison D Axtman
National Institutes of Health (U24DK116204)
- David H Drewry
- Alison D Axtman
National Institutes of Health (R44TR001916)
- David H Drewry
- Alison D Axtman
Cancer Research UK (CC2037)
- Margaux Silvestre
- Sila Ultanir
Medical Research Council (CC2037)
- Margaux Silvestre
- Sila Ultanir
Wellcome Trust (CC2037)
- Margaux Silvestre
- Sila Ultanir
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animals-The Francis Crick Institute (TFCI). Rat handling and housing was performed according to the regulations of the Animal (Scientific Procedures) Act 1986. Animal studies were approved by the Francis Crick Institute ethical committee and performed under U.K. Home Office project license (PPL P5E6B5A4B).Animals-University of Colorado School of Medicine (UC-SOM). All studies conformed to the requirements of the National Institutes of Health Guide for the Care and Use of Laboratory Rats and were approved by the Institutional Animal Care and Use subcommittee of the University of Colorado Anschutz Medical Campus (protocol 00411). Timed-pregnant Sprague Dawley rats (Charles Rivers Labs, Wilmington, MA, USA) gave birth in-house. All rodents were housed in micro-isolator cages with water and chow available ad libitum.
Copyright
© 2023, Castano et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,451
- views
-
- 220
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the ‘hemisection’ was always applied to the right side. Based on our model, we hypothesized that following hemisection the contralesional (‘intact’, left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional (‘hemisected’, right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
-
- Neuroscience
Reversing opioid overdoses in rats using a drug that does not enter the brain prevents the sudden and severe withdrawal symptoms associated with therapeutics that target the central nervous system.