Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3b, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3b activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3b activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3b. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Data availability
Materials and data availability statement has been provided in the text: Data are available via Dryad (https://doi.org/10.5061/dryad.sn02v6x88). New reagents are available from the senior authors.
-
Data from: Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiologyDryad Digital Repository, doi:10.5061/dryad.sn02v6x88.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (NS112770)
- Anna Castano
- Margaux Silvestre
- Carrow I Wells
- Jennifer L Sanderson
- Carla A Ferrer
- Han Wee Ong
- Yi Lang
- William Richardson
- Josie A Silvaroli
- Frances M Bashore
- Jeffery L Smith
- Isabelle M Genereux
- Kelvin Dempster
- David H Drewry
- Navlot S Pabla
- Alex N Bullock
- Tim A Benke
- Sila Ultanir
- Alison D Axtman
LouLou Foundation (11015)
- Margaux Silvestre
Children's Hospital Colorado Foundation (Ponzio Family Chair in Neuroscience Research)
- Anna Castano
- Jennifer L Sanderson
- Tim A Benke
Structural Genomics Consortium
- Carrow I Wells
- Carla A Ferrer
- Han Wee Ong
- Yi Lang
- Frances M Bashore
- Jeffery L Smith
- Isabelle M Genereux
- David H Drewry
- Alison D Axtman
NC Biotechnology Center Institutional Support Grant (2018-IDG-1030)
- David H Drewry
- Alison D Axtman
National Institutes of Health (U24DK116204)
- David H Drewry
- Alison D Axtman
National Institutes of Health (R44TR001916)
- David H Drewry
- Alison D Axtman
Cancer Research UK (CC2037)
- Margaux Silvestre
- Sila Ultanir
Medical Research Council (CC2037)
- Margaux Silvestre
- Sila Ultanir
Wellcome Trust (CC2037)
- Margaux Silvestre
- Sila Ultanir
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animals-The Francis Crick Institute (TFCI). Rat handling and housing was performed according to the regulations of the Animal (Scientific Procedures) Act 1986. Animal studies were approved by the Francis Crick Institute ethical committee and performed under U.K. Home Office project license (PPL P5E6B5A4B).Animals-University of Colorado School of Medicine (UC-SOM). All studies conformed to the requirements of the National Institutes of Health Guide for the Care and Use of Laboratory Rats and were approved by the Institutional Animal Care and Use subcommittee of the University of Colorado Anschutz Medical Campus (protocol 00411). Timed-pregnant Sprague Dawley rats (Charles Rivers Labs, Wilmington, MA, USA) gave birth in-house. All rodents were housed in micro-isolator cages with water and chow available ad libitum.
Copyright
© 2023, Castano et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,338
- views
-
- 199
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
- Neuroscience
The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.
-
- Neuroscience
Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.