Atypical peripheral actin band formation via overactivation of RhoA and Non-muscle myosin II in Mitofusin 2 deficient cells

Abstract

Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas the Mfn2-/- cells maintain a circular shape. Increased cytosolic Ca2+ resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and ER to close vicinity. Elevated cytosolic Ca2+ activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and Myosin light-chain kinase, causing an over-activation of non-muscle Myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-5, 7 and Figure 5-figure Supplement 1.

Article and author information

Author details

  1. Yueyang Wang

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lee D Troughton

    Cell and Molecular Physiology, Loyola University Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fan Xu

    Weldon School of Biomedical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6298-5587
  4. Aritra Chatterjee

    Weldon School of Biomedical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5318-3459
  5. Chang Ding

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Han Zhao

    Davidson School of Chemical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura P Cifuentes

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ryan B Wagner

    School of Mechanical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4111-8027
  9. Tianqi Wang

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shelly Tan

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jingjuan Chen

    Department of Animal Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Linlin Li

    Weldon School of Biomedical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9667-2965
  13. David Umulis

    Department of Agricultural and Biological Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1913-2284
  14. Shihuan Kuang

    Department of Animal Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9180-3180
  15. Daniel M Suter

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5230-7229
  16. Chongli Yuan

    Davidson School of Chemical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3765-0931
  17. Deva Chan

    Weldon School of Biomedical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1508-1045
  18. Fang Huang

    Weldon School of Biomedical Engineering, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Patrick W Oakes

    Cell and Molecular Physiology, Loyola University Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9951-1318
  20. Qing Deng

    Department of Biological Sciences, Purdue University West Lafayette, West Lafayette, United States
    For correspondence
    deng67@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9254-9951

Funding

National Institute of General Medical Sciences (R35GM119787)

  • Qing Deng

National Cancer Institute (P30CA023168)

  • Qing Deng

National Science Foundation (2120200)

  • Deva Chan

National Institute of General Medical Sciences (R01GM132501)

  • David Umulis

National Institute of Mental Health (R35GM119785)

  • Fang Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan A Cooper, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Preprint posted: October 4, 2022 (view preprint)
  2. Received: April 21, 2023
  3. Accepted: September 19, 2023
  4. Accepted Manuscript published: September 19, 2023 (version 1)
  5. Version of Record published: October 4, 2023 (version 2)

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 767
    views
  • 108
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yueyang Wang
  2. Lee D Troughton
  3. Fan Xu
  4. Aritra Chatterjee
  5. Chang Ding
  6. Han Zhao
  7. Laura P Cifuentes
  8. Ryan B Wagner
  9. Tianqi Wang
  10. Shelly Tan
  11. Jingjuan Chen
  12. Linlin Li
  13. David Umulis
  14. Shihuan Kuang
  15. Daniel M Suter
  16. Chongli Yuan
  17. Deva Chan
  18. Fang Huang
  19. Patrick W Oakes
  20. Qing Deng
(2023)
Atypical peripheral actin band formation via overactivation of RhoA and Non-muscle myosin II in Mitofusin 2 deficient cells
eLife 12:e88828.
https://doi.org/10.7554/eLife.88828

Share this article

https://doi.org/10.7554/eLife.88828

Further reading

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.

    1. Cell Biology
    Rita De Gasperi, Laszlo Csernoch ... Christopher P Cardozo
    Research Article

    Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.