Postsynaptic mitochondria are positioned to support functional diversity of dendritic spines

  1. Connon I Thomas
  2. Melissa A Ryan
  3. Naomi Kamasawa
  4. Benjamin Scholl  Is a corresponding author
  1. Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Max Planck Way, United States
  2. Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, United States
8 figures and 1 additional file

Figures

Volumetric characterization of postsynaptic mitochondria in L2/3 pyramidal neurons of ferret visual cortex.

(A) Example electron microscopy (EM) reconstruction of a dendrite with mitochondria (purple). (B) Cumulative frequency distribution of inter-mitochondria distance. (C) EM reconstructions of all …

Dendritic mitochondria are positioned to support a diversity of anatomical strengths.

(A) Schematic illustration of the method used to measure dendritic mitochondria volume near structurally and functionally characterized spines in electron microscopy (EM) reconstructions. A sphere …

Dendritic mitochondria are positioned to support spines with a diversity of orientation tuning.

(A) Two-photon average projection image of a short segment of GCaMP6s-labeled dendrite and the corresponding electron microscopy (EM) reconstruction. Functionally characterized spines are indicated …

Dendritic mitochondria are positioned locally in regions having diverse synaptic orientation preferences and broadly in areas of low local Ca2+ activity.

(A) Illustration of average difference in orientation preference between a target spine (arrowhead) and neighboring spines within 5 µm. (B, C) Correlation of local orientation difference and …

Spines having a mitochondrion in the head or neck are larger.

(A) Cumulative frequency distribution of spine head volume for spines that have a mitochondrion in the head or neck (black, n=10 spines, shown in Figure 1C) versus spines that do not (gray). (B) PSD …

Spines having a mitochondrion in the head or neck are more selective for visual features.

(A) Cumulative frequency distribution of orientation selectivity for spines that have a mitochondrion in the head or neck (black, n=10 spines, shown in Figure 1C) versus spines that do not (gray). (B

Author response image 1
Here, we examined the relationship to spine head volume, spine-soma orientation preference difference, and the local orientation preference heterogeneity.

No relationship showed any significant correlation. Again, this may not be surprising given the drawbacks of measuring ‘distance to mitochondria’.

Author response image 2

Additional files

Download links