Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB

  1. Ling-Yun Zhou
  2. Chen-Xi Jin
  3. Wen-Xiao Wang
  4. Lei Song
  5. Jung-Bum Shin
  6. Ting-Ting Du  Is a corresponding author
  7. Hao Wu  Is a corresponding author
  1. Shanghai Jiao Tong University, China
  2. University of Virginia, United States

Abstract

The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used FACS-based hair cell RNA-seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.

Data availability

Sequencing data have been deposited in GSA under accession code CRA010747.All data generated or analysed during this study are included in the manuscript and supporting file.

The following data sets were generated

Article and author information

Author details

  1. Ling-Yun Zhou

    Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen-Xi Jin

    Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wen-Xiao Wang

    Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lei Song

    Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jung-Bum Shin

    Department of Neuroscience, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3047-0874
  6. Ting-Ting Du

    Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    tingtingdu_jei@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0333-8739
  7. Hao Wu

    Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    wuhao@shsmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5317-902X

Funding

National Natural Science Foundation of China (82000975)

  • Ting-Ting Du

Fundamental Research Program Funding of Ninth People's Hospital affiliated to Shanghai Jiao Tong university School of Medicine (JYZZ057)

  • Ting-Ting Du

Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)

  • Hao Wu

Shanghai Municipal Science and Technology Major Project (21JC1404000)

  • Hao Wu

National Natural Science Foundation of China (81970872)

  • Hao Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pascal Martin, Institut Curie, France

Ethics

Animal experimentation: The study protocol was approved by the Ethics Committee of Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital (Shanghai, China) (SH9H-2020-A682-1) All animal maintenance and experimental procedures were performed by the recommendations in the Guide for the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong University.

Version history

  1. Received: June 13, 2023
  2. Preprint posted: June 26, 2023 (view preprint)
  3. Accepted: November 17, 2023
  4. Accepted Manuscript published: November 20, 2023 (version 1)
  5. Version of Record published: December 7, 2023 (version 2)
  6. Version of Record updated: February 5, 2024 (version 3)

Copyright

© 2023, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 515
    views
  • 128
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ling-Yun Zhou
  2. Chen-Xi Jin
  3. Wen-Xiao Wang
  4. Lei Song
  5. Jung-Bum Shin
  6. Ting-Ting Du
  7. Hao Wu
(2023)
Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB
eLife 12:e90155.
https://doi.org/10.7554/eLife.90155

Share this article

https://doi.org/10.7554/eLife.90155

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.