Cas phosphorylation regulates focal adhesion assembly

  1. Saurav Kumar
  2. Amanda Stainer
  3. Julien Dubrulle
  4. Christopher Simpkins
  5. Jonathan A Cooper  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States

Abstract

Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated, and associated with its effectors, Crk/CrkL, in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin b1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin b1 is activated and core focal adhesion proteins including vinculin, talin, kindlin and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin b1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.

Data availability

All raw Western blots generated during the study have been included as source files. Matlab code used in the study is uploaded on GitHub (https://github.com/FredHutch/Cas-integrin-paper-2023-Cooper-lab).

Article and author information

Author details

  1. Saurav Kumar

    Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0992-589X
  2. Amanda Stainer

    Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7068-2658
  3. Julien Dubrulle

    Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4186-7749
  4. Christopher Simpkins

    Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3174-6609
  5. Jonathan A Cooper

    Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    jcooper@fhcrc.org
    Competing interests
    Jonathan A Cooper, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8626-7827

Funding

Fred Hutchinson Cancer Research Center

  • Saurav Kumar
  • Amanda Stainer
  • Christopher Simpkins
  • Jonathan A Cooper

National Institutes of Health

  • Saurav Kumar
  • Amanda Stainer
  • Christopher Simpkins
  • Jonathan A Cooper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Version history

  1. Preprint posted: December 19, 2022 (view preprint)
  2. Received: June 16, 2023
  3. Accepted: July 19, 2023
  4. Accepted Manuscript published: July 25, 2023 (version 1)
  5. Version of Record published: August 17, 2023 (version 2)

Copyright

© 2023, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,252
    views
  • 173
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saurav Kumar
  2. Amanda Stainer
  3. Julien Dubrulle
  4. Christopher Simpkins
  5. Jonathan A Cooper
(2023)
Cas phosphorylation regulates focal adhesion assembly
eLife 12:e90234.
https://doi.org/10.7554/eLife.90234

Share this article

https://doi.org/10.7554/eLife.90234

Further reading

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.